1
|
Formation and electrochemical properties of ternary mesoporous carbon, coordination C60Pd polymer and palladium nanoparticle composites. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Collins G, Kasturi PR, Karthik R, Shim JJ, Sukanya R, Breslin CB. Mesoporous carbon-based materials and their applications as non-precious metal electrocatalysts in the oxygen reduction reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Mazzucato M, Daniel G, Perazzolo V, Brandiele R, Rizzi GA, Isse AA, Gennaro A, Durante C. Mesoporosity and nitrogen doping: The leading effect in oxygen reduction reaction activity and selectivity at nitrogen‐doped carbons prepared by using polyethylene oxide‐block‐polystyrene as a sacrificial template. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Marco Mazzucato
- Department of Chemical Sciences University of Padova Padova Italy
| | - Giorgia Daniel
- Department of Chemical Sciences University of Padova Padova Italy
| | | | | | | | | | - Armando Gennaro
- Department of Chemical Sciences University of Padova Padova Italy
| | | |
Collapse
|
4
|
Zhang Y, Daniel G, Lanzalaco S, Isse AA, Facchin A, Wang A, Brillas E, Durante C, Sirés I. H 2O 2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127005. [PMID: 34479080 DOI: 10.1016/j.jhazmat.2021.127005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The excessive cost, unsustainability or complex production of new highly selective electrocatalysts for H2O2 production, especially noble-metal-based ones, is prohibitive in the water treatment sector. To solve this conundrum, biomass-derived carbons with adequate textural properties were synthesized via agarose double-step pyrolysis followed by steam activation. A longer steam treatment enhanced the graphitization and porosity, even surpassing commercial carbon black. Steam treatment for 20 min yielded the greatest surface area (1248 m2 g-1), enhanced the mesopore/micropore volume distribution and increased the activity (E1/2 = 0.609 V) and yield of H2O2 (40%) as determined by RRDE. The upgraded textural properties had very positive impact on the ability of the corresponding gas-diffusion electrodes (GDEs) to accumulate H2O2, reaching Faradaic current efficiencies of ~95% at 30 min. Acidic solutions of β-blocker acebutolol were treated by photoelectro-Fenton (PEF) process in synthetic media with and without chloride. In urban wastewater, total drug disappearance was reached at 60 min with almost 50% mineralization after 360 min at only 10 mA cm-2. Up to 14 degradation products were identified in the Cl--containing medium.
Collapse
Affiliation(s)
- Yanyu Zhang
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Giorgia Daniel
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Alessandro Facchin
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Christian Durante
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
5
|
Daniel G, Mazzucato M, Brandiele R, De Lazzari L, Badocco D, Pastore P, Kosmala T, Granozzi G, Durante C. Sulfur Doping versus Hierarchical Pore Structure: The Dominating Effect on the Fe-N-C Site Density, Activity, and Selectivity in Oxygen Reduction Reaction Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42693-42705. [PMID: 34468127 PMCID: PMC8447183 DOI: 10.1021/acsami.1c09659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen doping has been always regarded as one of the major factors responsible for the increased catalytic activity of Fe-N-C catalysts in the oxygen reduction reaction, and recently, sulfur has emerged as a co-doping element capable of increasing the catalytic activity even more because of electronic effects, which modify the d-band center of the Fe-N-C catalysts or because of its capability to increase the Fe-Nx site density (SD). Herein, we investigate in detail the effect of sulfur doping of carbon support on the Fe-Nx site formation and on the textural properties (micro- and mesopore surface area and volume) in the resulting Fe-N-C catalysts. The Fe-N-C catalysts were prepared from mesoporous carbon with tunable sulfur doping (0-16 wt %), which was achieved by the modulation of the relative amount of sucrose/dibenzothiophene precursors. The carbon with the highest sulfur content was also activated through steam treatment at 800 °C for different durations, which allowed us to modulate the carbon pore volume and surface area (1296-1726 m2 g-1). The resulting catalysts were tested in O2-saturated 0.5 M H2SO4 electrolyte, and the site density (SD) was determined using the NO-stripping technique. Here, we demonstrate that sulfur doping has a porogenic effect increasing the microporosity of the carbon support, and it also facilitates the nitrogen fixation on the carbon support as well as the formation of Fe-Nx sites. It was found that the Fe-N-C catalytic activity [E1/2 ranges between 0.609 and 0.731 V vs reversible hydrogen electrode (RHE)] does not directly depend on sulfur content, but rather on the microporous surface and therefore any electronic effect appears not to be determinant as confirmed by X-ray photoemission spectroscopy (XPS). The graph reporting Fe-Nx SD versus sulfur content assumes a volcano-like shape, where the maximum value is obtained for a sulfur/iron ratio close to 18, i.e., a too high or too low sulfur doping has a detrimental effect on Fe-Nx formation. However, it was highlighted that the increase of Fe-Nx SD is a necessary but not sufficient condition for increasing the catalytic activity of the material, unless the textural properties are also optimized, i.e., there must be an optimized hierarchical porosity that facilitates the mass transport to the active sites.
Collapse
|
6
|
Abstract
The development of platinum group metal-free (PGM-free) electrocatalysts derived from cheap and environmentally friendly biomasses for oxygen reduction reaction (ORR) is a topic of relevant interest, particularly from the point of view of sustainability. Fe-nitrogen-doped carbon materials (Fe-N-C) have attracted particular interest as alternative to Pt-based materials, due to the high activity and selectivity of Fe-Nx active sites, the high availability and good tolerance to poisoning. Recently, many studies focused on developing synthetic strategies, which could transform N-containing biomasses into N-doped carbons. In this paper, chitosan was employed as a suitable N-containing biomass for preparing Fe-N-C catalyst in virtue of its high N content (7.1%) and unique chemical structure. Moreover, the major application of chitosan is based on its ability to strongly coordinate metal ions, a precondition for the formation of Fe-Nx active sites. The synthesis of Fe-N-C consists in a double step thermochemical conversion of a dried chitosan hydrogel. In acidic aqueous solution, the preparation of physical cross-linked hydrogel allows to obtain sophisticated organization, which assure an optimal mesoporosity before and after the pyrolysis. After the second thermal treatment at 900 °C, a highly graphitized material was obtained, which has been fully characterized in terms of textural, morphological and chemical properties. RRDE technique was used for understanding the activity and the selectivity of the material versus the ORR in 0.5 M H2SO4 electrolyte. Special attention was put in the determination of the active site density according to nitrite electrochemical reduction measurements. It was clearly established that the catalytic activity expressed as half wave potential linearly scales with the number of Fe-Nx sites. It was also established that the addition of the iron precursor after the first pyrolysis step leads to an increased activity due to both an increased number of active sites and of a hierarchical structure, which improves the access to active sites. At the same time, the increased graphitization degree, and a reduced density of pyrrolic nitrogen groups are helpful to increase the selectivity toward the 4e- ORR pathway.
Collapse
|
7
|
Liu X, Shanbhag S, Natesakhawat S, Whitacre JF, Mauter MS. Performance Loss of Activated Carbon Electrodes in Capacitive Deionization: Mechanisms and Material Property Predictors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15516-15526. [PMID: 33205957 DOI: 10.1021/acs.est.0c06549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the material property origins of performance decay in carbon electrodes is critical to maximizing the longevity of capacitive deionization (CDI) systems. This study investigates the cycling stability of electrodes fabricated from six commercial and two post-processed activated carbons. We find that the capacity decay rate of electrodes in half cells is positively correlated with the specific surface area and total surface acidity of the activated carbons. We also demonstrate that half-cell cycling stability is consistent with full cell desalination performance durability. Additionally, our results suggest that increase in internal resistance and physical pore blockage resulting from extensive cycling may be important mechanisms for the specific capacitance decay of activated carbon electrodes in this study. Our findings provide crucial guidelines for selecting activated carbon electrodes for stable CDI performance over long-term operation and insight into appropriate parameters for electrode performance and longevity in models assessing the techno-economic viability of CDI. Finally, our half-cell cycling protocol also offers a method for evaluating the stability of new electrode materials without preparing large, freestanding electrodes.
Collapse
Affiliation(s)
- Xitong Liu
- Department of Civil & Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Civil and Environmental Engineering, The George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| | - Sneha Shanbhag
- Department of Civil & Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sittichai Natesakhawat
- National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jay F Whitacre
- Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Material Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- The Scott Institute for Energy Innovation, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Meagan S Mauter
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Brandiele R, Poli F, Picelli L, Pilot R, Rizzi GA, Soavi F, Durante C. Nitrogen‐Doped Mesoporous Carbon Electrodes Prepared from Templating Propylamine‐Functionalized Silica. ChemElectroChem 2020. [DOI: 10.1002/celc.202000098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Riccardo Brandiele
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
| | - Federico Poli
- Department of ChemistryAlma Mater Studiorum University of Bologna Via Selmi 2, 40126 Bologna Italy
| | - Luca Picelli
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
| | - Roberto Pilot
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
- Consorzio INSTM via G. Giusti 9 50121 Firenze Italy
| | - Gian Andrea Rizzi
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
| | - Francesca Soavi
- Department of ChemistryAlma Mater Studiorum University of Bologna Via Selmi 2, 40126 Bologna Italy
| | - Christian Durante
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
| |
Collapse
|
9
|
Homaeigohar S. The Nanosized Dye Adsorbents for Water Treatment. NANOMATERIALS 2020; 10:nano10020295. [PMID: 32050582 PMCID: PMC7075180 DOI: 10.3390/nano10020295] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/14/2023]
Abstract
Clean water is a vital element for survival of any living creature and, thus, crucially important to achieve largely and economically for any nation worldwide. However, the astonishingly fast trend of industrialization and population growth and the arisen extensive water pollutions have challenged access to clean water across the world. In this regard, 1.6 million tons of dyes are annually consumed. Thereof, 10%–15% are wasted during use. To decolorize water streams, there is an urgent need for the advanced remediation approaches involving utilization of novel materials and technologies, which are cost and energy efficient. Nanomaterials, with their outstanding physicochemical properties, can potentially resolve the challenge of need to water treatment in a less energy demanding manner. In this review, a variety of the most recent (from 2015 onwards) opportunities arisen from nanomaterials in different dimensionalities, performances, and compositions for water decolorization is introduced and discussed. The state-of-the-art research studies are presented in a classified manner, particularly based on structural dimensionality, to better illustrate the current status of adsorption-based water decolorization using nanomaterials. Considering the introduction of many newly developed nano-adsorbents and their classification based on the dimensionality factor, which has never been employed for this sake in the related literature, a comprehensive review will be presented.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland
| |
Collapse
|
10
|
Brandiele R, Amendola V, Guadagnini A, Rizzi GA, Badocco D, Pastore P, Isse AA, Durante C, Gennaro A. Facile synthesis of Pd3Y alloy nanoparticles for electrocatalysis of the oxygen reduction reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Brandiele R, Zerbetto M, Dalconi MC, Rizzi GA, Isse AA, Durante C, Gennaro A. Mesoporous Carbon with Different Density of Thiophenic-Like Functional Groups and Their Effect on Oxygen Reduction. CHEMSUSCHEM 2019; 12:4229-4239. [PMID: 31309717 DOI: 10.1002/cssc.201901568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The metal-support interactions between sulfur-doped carbon supports (SMCs) and Pt nanoparticles (NPs) were investigated, aiming at verifying how sulfur functional groups can improve the electrocatalytic performance of Pt NPs towards the oxygen reduction reaction (ORR). SMCs were synthetized, tailoring the density of sulfur functional groups, and Pt NPs were deposited by thermal reduction of Pt(acac)2 . The extent of the metal-support interaction was proved by X-ray photoelectron spectroscopy (XPS) analysis, which revealed a strong electronic interaction, proportional to the density of sulfur defects, whereas XRD spectra provided evidence of higher strain in Pt NPs loaded on SMC. DFT simulations confirmed that the metal-support interaction was strongest in the presence of a high density of sulfur defects. The combination of microstrain and electronic effects resulted in a high catalytic activity of supported Pt NPs towards ORR, with linear correlations of the half-wave potential E1/2 or the kinetic current jk with the sulfur content in the support. Furthermore, a mass activity value (550 A g-1 ) well above the United States Department of Energy target of 440 A g-1 at 0.9 V (vs. reversible hydrogen electrode, RHE), was determined.
Collapse
Affiliation(s)
- Riccardo Brandiele
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Mirco Zerbetto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Maria Chiara Dalconi
- Department of Geoscience, University of Padova, via Gradenigo 6, 35131, Padova, Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Christian Durante
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Armando Gennaro
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
12
|
Miola M, Hu XM, Brandiele R, Bjerglund ET, Grønseth DK, Durante C, Pedersen SU, Lock N, Skrydstrup T, Daasbjerg K. Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Probing the correlation between Pt-support interaction and oxygen reduction reaction activity in mesoporous carbon materials modified with Pt-N active sites. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.182] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Kim IG, Nah IW, Park S. Enhanced Oxygen Reduction Stability and Activity by Co and N (or O) Interaction in CoO on N-Doped Carbon Prepared through Spray Pyrolysis. ChemElectroChem 2018. [DOI: 10.1002/celc.201800396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- In Gyeom Kim
- Department of Chemical Engineering; Kwangwoon University; 20 Kwangwoon-ro, Nowon-gu Seoul 01897 Repubilic of Korea
- Center for Energy Convengence; Korea Institute of Science & Technology (KIST); 5, Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - In Wook Nah
- Center for Energy Convengence; Korea Institute of Science & Technology (KIST); 5, Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Sehkyu Park
- Department of Chemical Engineering; Kwangwoon University; 20 Kwangwoon-ro, Nowon-gu Seoul 01897 Repubilic of Korea
| |
Collapse
|
15
|
Perazzolo V, Brandiele R, Durante C, Zerbetto M, Causin V, Rizzi GA, Cerri I, Granozzi G, Gennaro A. Density Functional Theory (DFT) and Experimental Evidences of Metal–Support Interaction in Platinum Nanoparticles Supported on Nitrogen- and Sulfur-Doped Mesoporous Carbons: Synthesis, Activity, and Stability. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03942] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valentina Perazzolo
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Riccardo Brandiele
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Christian Durante
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Mirco Zerbetto
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Valerio Causin
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Gian Andrea Rizzi
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Isotta Cerri
- Toyota Motor Europe, Hoge Wei
33, 1930 Zaventem, Belgium
| | - Gaetano Granozzi
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Armando Gennaro
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
16
|
Brandiele R, Picelli L, Pilot R, Causin V, Martucci A, Rizzi GA, Isse AA, Durante C, Gennaro A. Nitrogen and Sulfur Doped Mesoporous Carbons, Prepared from Templating Silica, as Interesting Material for Supercapacitors. ChemistrySelect 2017. [DOI: 10.1002/slct.201701404] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Riccardo Brandiele
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Luca Picelli
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Roberto Pilot
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
- UdR INSTM; Via Marzolo 1 35131 Padova Italy
| | - Valerio Causin
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Alessandro Martucci
- Department of Industrial Engineering; University of Padova; Via Marzolo 9 35131 Padova Italy
| | - Gian A. Rizzi
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Abdirisak A. Isse
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Christian Durante
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
17
|
Utilization of AuNPs dotted S-doped carbon nanoflakes as electrochemical sensing platform for simultaneous determination of Cu (II) and Hg (II). J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Zhang E, Wu M, Tang Q, Gong Q, Sun S, Qiao J, Zhang L. Using aminopyrine as a nitrogen-enriched small molecule precursor to synthesize high-performing nitrogen doped mesoporous carbon for catalyzing oxygen reduction reaction. RSC Adv 2017. [DOI: 10.1039/c6ra25125k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With aminopyrine as a nitrogen-enriched small molecule precursor, a series of nitrogen doped carbon materials have been fabricated and explored as electrocatalysts for oxygen reduction reaction (ORR).
Collapse
Affiliation(s)
- Enguang Zhang
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Mingjie Wu
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Qiaowei Tang
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Qiaojuan Gong
- Department of Applied Chemistry
- Yuncheng University
- Yun Cheng 04400
- P. R. China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)
- Energie Materiaux Telecommunications Research Center
- Canada
| | - Jinli Qiao
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Lei Zhang
- Energy, Mining and Environment
- National Research Council Canada
- Vancouver
- Canada
| |
Collapse
|
19
|
Perazzolo V, Durante C, Gennaro A. Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Shi YC, Wang AJ, Wu XL, Chen JR, Feng JJ. Green-assembly of three-dimensional porous graphene hydrogels for efficient removal of organic dyes. J Colloid Interface Sci 2016; 484:254-262. [PMID: 27619385 DOI: 10.1016/j.jcis.2016.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/07/2016] [Accepted: 09/05/2016] [Indexed: 11/24/2022]
Abstract
Herein, a facile and straightforward green-assembly approach was developed for preparation of nitrogen and sulphur co-doped three-dimensional (3D) graphene hydrogels (N/S-GHs) with the assistance of glutathione. Specifically, graphene oxide is reduced and assembled into 3D porous nanostructures with glutathione as the reducing agent and modifier for its intrinsic structure, along with the nitrogen and sulphur sources in the synthetic process. As expected, the as-obtained N/S-GHs demonstrated superior adsorption performances for organic dyes (e.g., methylene blue, malachite green, and crystal violet) in aqueous media. This work provides new insight for the green-assembly of 3D porous nanomaterials as adsorbent and their promising applications in water treatment.
Collapse
Affiliation(s)
- Ya-Cheng Shi
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xi-Lin Wu
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Rong Chen
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|