1
|
Zhang M, Wang Z, Bo X, Huang R, Deng D. Two-Dimensional Catalysts: From Model to Reality. Angew Chem Int Ed Engl 2025; 64:e202419661. [PMID: 39617995 DOI: 10.1002/anie.202419661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 12/12/2024]
Abstract
Two-dimensional (2D) materials have been utilized broadly in kinds of catalytic reactions due to their fully exposed active sites and special electronic structure. Compared with real catalysts, which are usually bulk or particle, 2D materials have more well-defined structures. With easily identified structure-modulated engineering, 2D materials become ideal models to figure out the catalytic structure-function relations, which is helpful for the precise design of catalysts. In this review, the unique function of 2D materials was summarized from model study to reality catalysis and application. It includes several typical 2D materials, such as graphene, transition metal dichalcogenides, metal, and metal (hydr)oxide materials. We introduced the structural characteristics of 2D materials and their advantages in model researches. It emphatically summarized how 2D materials serve as models to explore the structure-activity relationship by combining theoretical calculations and surface research. The opportunities of 2D materials and the challenges for fundamentals and applications they facing are also addressed. This review provides a reference for the design of catalyst structure and composition, and could inspire the realization of two-dimensional materials from model study to reality application in industry.
Collapse
Affiliation(s)
- Mo Zhang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Zifeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Bo
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Rui Huang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Wang Q, Li M, Xi M, Zhao M, Wang X, Chen X, Ding L. Recovery of Ag(I) from Wastewater by Adsorption: Status and Challenges. TOXICS 2024; 12:351. [PMID: 38787130 PMCID: PMC11125793 DOI: 10.3390/toxics12050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Untreated or inadequately treated silver-containing wastewater may pose adverse effects on hu-man health and the ecological environment. Currently, significant progress has been made in the treatment of Ag(I) in wastewater using adsorption methods, with adsorbents playing a pivotal role in this process. This paper provides a systematic review of various adsorbents for the recovery and treatment of Ag(I) in wastewater, including MOFs, COFs, transition metal sulfides, metal oxides, biomass materials, and other polymeric materials. The adsorption mechanisms of these materials for Ag(I) are elaborated upon, along with the challenges currently faced. Furthermore, insights into optimizing adsorbents and developing novel adsorbents are proposed in this study.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengling Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Meng Xi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengyuan Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaotong Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoyu Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
3
|
Wu Y, Muthukrishnan A, Nagata S, Nabae Y. Tafel Slope Analysis from Inherent Rate Constants for Oxygen Reduction Reaction Over N-doped Carbon and Fe–N-doped Carbon Electrocatalysts. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Molten-Salt-Assisted Synthesis of Nitrogen-Doped Carbon Nanosheets Derived from Biomass Waste of Gingko Shells as Efficient Catalyst for Oxygen Reduction Reaction. Processes (Basel) 2021. [DOI: 10.3390/pr9122124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Developing superior efficient and durable oxygen reduction reaction (ORR) catalysts is critical for high-performance fuel cells and metal–air batteries. Herein, we successfully prepared a 3D, high-level nitrogen-doped, metal-free (N–pC) electrocatalyst employing urea as a single nitrogen source, NaCl as a fully sealed nanoreactor and gingko shells, a biomass waste, as carbon precursor. Due to the high content of active nitrogen groups, large surface area (1133.8 m2 g−1), and 3D hierarchical porous network structure, the as-prepared N–pC has better ORR electrocatalytic performance than the commercial Pt/C and most metal-free carbon materials in alkaline media. Additionally, when N–pC was used as a catalyst for an air electrode, the Zn–air battery (ZAB) had higher peak power density (223 mW cm−2), larger specific-capacity (755 mAh g−1) and better rate-capability than the commercial Pt/C-based one, displaying a good application prospect in metal-air batteries.
Collapse
|
5
|
Zhao R, Chen Y, Huang S. Doping engineering on carbons as electrocatalysts for oxygen reduction reaction. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Kim S, Park H, Li OL. Cobalt Nanoparticles on Plasma-Controlled Nitrogen-Doped Carbon as High-Performance ORR Electrocatalyst for Primary Zn-Air Battery. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E223. [PMID: 32013025 PMCID: PMC7074963 DOI: 10.3390/nano10020223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 11/17/2022]
Abstract
Metal-air batteries and fuel cells have attracted much attention as powerful candidates for a renewable energy conversion system for the last few decades. However, the high cost and low durability of platinum-based catalysts used to enhance sluggish oxygen reduction reaction (ORR) at air electrodes prevents its wide application to industry. In this work, we applied a plasma process to synthesize cobalt nanoparticles catalysts on nitrogen-doped carbon support with controllable quaternary-N and amino-N structure. In the electrochemical test, the quaternary-N and amino-N-doped carbon (Q-A)/Co catalyst with dominant quaternary-N and amino-N showed the best onset potential (0.87 V vs. RHE) and highest limiting current density (-6.39 mA/cm2). Moreover, Q-A/Co was employed as the air catalyst of a primary zinc-air battery with comparable peak power density to a commercial 20 wt.% Pt/C catalyst with the same loading, as well as a stable galvanostatic discharge at -20 mA/cm2 for over 30,000 s. With this result, we proposed the synergetic effect of transitional metal nanoparticles with controllable nitrogen-bonding can improve the catalytic activity of the catalyst, which provides a new strategy to develop a Pt-free ORR electrocatalyst.
Collapse
Affiliation(s)
- Seonghee Kim
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Hyun Park
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Korea;
| | - Oi Lun Li
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
7
|
He Y, Ma Y, Meng J, Zhang X, Xia Y. Dual electrochemical catalysis of Bi2Mo3O12/Ti cathode for hydrogen peroxide production in electro-Fenton system. J Catal 2019. [DOI: 10.1016/j.jcat.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804799. [PMID: 30637835 DOI: 10.1002/adma.201804799] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/07/2018] [Indexed: 06/09/2023]
Abstract
Replacing precious platinum with earth-abundant materials for the oxygen reduction reaction (ORR) in fuel cells has been the objective worldwide for several decades. In the last 10 years, the fastest-growing branch in this area has been carbon-based metal-free ORR electrocatalysts. Great progress has been made in promoting the performance and understanding the underlying fundamentals. Here, a comprehensive review of this field is presented by emphasizing the emerging issues including the predictive design and controllable construction of porous structures and doping configurations, mechanistic understanding from the model catalysts, integrated experimental and theoretical studies, and performance evaluation in full cells. Centering on these topics, the most up-to-date results are presented, along with remarks and perspectives for the future development of carbon-based metal-free ORR electrocatalysts.
Collapse
Affiliation(s)
- Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100083, China
| | - Lei Du
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuyan Shao
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jun Liu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Liming Dai
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Singh SK, Takeyasu K, Nakamura J. Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804297. [PMID: 30350433 DOI: 10.1002/adma.201804297] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Indexed: 05/22/2023]
Abstract
The oxygen reduction reaction (ORR) is a core reaction for electrochemical energy technologies such as fuel cells and metal-air batteries. ORR catalysts have been limited to platinum, which meets the requirements of high activity and durability. Over the last few decades, a variety of materials have been tested as non-Pt catalysts, from metal-organic complex molecules to metal-free catalysts. In particular, nitrogen-doped graphitic carbon materials, including N-doped graphene and N-doped carbon nanotubes, have been extensively studied. However, due to the lack of understanding of the reaction mechanism and conflicting knowledge of the catalytic active sites, carbon-based catalysts are still under the development stage of achieving a performance similar to Pt-based catalysts. In addition to the catalytic viewpoint, designing mass transport pathways is required for O2 . Recently, the importance of pyridinic N for the creation of active sites for ORR and the requirement of hydrophobicity near the active sites have been reported. Based on the increased knowledge in controlling ORR performances, bottom-up preparation of N-doped carbon catalysts, using N-containing conjugative molecules as the assemblies of the catalysts, is promising. Here, the recent understanding of the active sites and the mechanism of ORRs on N-doped carbon catalysts are reviewed.
Collapse
Affiliation(s)
- Santosh K Singh
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kotaro Takeyasu
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Junji Nakamura
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
10
|
Affiliation(s)
| | - Philippe Serp
- LCC CNRS-UPR 8241 ENSIACET Université de Toulouse Toulouse France
| |
Collapse
|
11
|
Lin CK. Pyridine vs N-Hydrogenated Pyridine Moieties: Theoretical Study of Stability and Spectroscopy of Nitrogen-Contained Heterocyclic Aromatic Compounds and Graphene Nanoflakes. ACS OMEGA 2018; 3:12312-12319. [PMID: 31459305 PMCID: PMC6645572 DOI: 10.1021/acsomega.8b01759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
Nitrogen is one of the most common heteroatom appearing in heterocyclic aromatic compounds (HACs) as well as the frequently applied dopant in graphene nanoflakes/nanoribbons. The pyridine moiety is an intuitive and stable common feature of these compounds; but interestingly, using density functional theory calculations, we found that the N-hydrogenated pyridine moiety could be even more stable in large HACs and in N-doped graphene nanoflakes considering their formation reaction energies. The hydrogenation reaction of the pyridine moiety was calculated to be exothermic for models of four and more fused aromatic rings with specific substitutional positions of nitrogen. This theoretical investigation provides energetic and spectroscopic hints to the existence of the N-hydrogenated pyridine moiety under proper conditions.
Collapse
Affiliation(s)
- Chih-Kai Lin
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 10617, Taiwan
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Osmieri L, Escudero-Cid R, Armandi M, Ocón P, Monteverde Videla AH, Specchia S. Effects of using two transition metals in the synthesis of non-noble electrocatalysts for oxygen reduction reaction in direct methanol fuel cell. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
He C, Zhang T, Sun F, Li C, Lin Y. Fe/N co-doped mesoporous carbon nanomaterial as an efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.104] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Briega-Martos V, Ferre-Vilaplana A, de la Peña A, Segura JL, Zamora F, Feliu JM, Herrero E. An Aza-Fused π-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. ACS Catal 2016. [DOI: 10.1021/acscatal.6b03043] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V. Briega-Martos
- Instituto
de Electroquímica, Universidad de Alicante, Apdo 99 E-03080 Alicante, Spain
| | - A. Ferre-Vilaplana
- Instituto
Tecnológico de Informática, Ciudad Politécnica de la Innovación, Camino de Vera s/n, E-46022 Valencia, Spain
- Departamento
de Sistemas Informáticos y Computación, Escuela Politécnica
Superior de Alcoy, Universidad Politécnica de Valencia, Plaza Ferrándiz
y Carbonell s/n, E-03801 Alcoy, Spain
| | - A. de la Peña
- Departamento
de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- Departamento
de Química Inorgánica e Instituto de Física de
la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - J. L. Segura
- Departamento
de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - F. Zamora
- Departamento
de Química Inorgánica e Instituto de Física de
la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - J. M. Feliu
- Instituto
de Electroquímica, Universidad de Alicante, Apdo 99 E-03080 Alicante, Spain
| | - E. Herrero
- Instituto
de Electroquímica, Universidad de Alicante, Apdo 99 E-03080 Alicante, Spain
| |
Collapse
|