1
|
Sadavar SP, Mulik SV, Koyale PA, Sadavar SV, Delekar SD. Advances in anion-intercalated layered double hydroxides for supercapacitors: study of chemical modifications and classifications. MATERIALS HORIZONS 2025. [PMID: 40261361 DOI: 10.1039/d4mh01860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Hybrid material-based electrochemical supercapacitors (SCs) possessing improved energy density (ED), enhanced stability, high porosity, and a large accessible surface area have attracted attention as promising energy storage devices. SCs also demonstrate excellent specific capacitance (Cs) across various current densities, increased capacitance, and high cell voltages, all contributing to improved ED. Layered double hydroxides (LDHs), with their anionic exchange capabilities and laminar structures, offer significant potential for boosting charge transfer in SCs. This review provides a comprehensive overview of the recent advances in anion-based LDHs, discussing their storage mechanisms, chemical modifications, and classification based on interlayer anions. The roles of different anions, including monovalent, divalent, and polyoxometalates, in enhancing storage properties are examined. In addition, the challenges, future research directions, and practical perspectives of anion-storing LDHs are presented. Hence, this review provides a concise overview of anion-based LDHs for SCs, highlighting their potential significance in energy storage applications.
Collapse
Affiliation(s)
- Sonali P Sadavar
- Nanoscience Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India.
| | - Swapnajit V Mulik
- Nanoscience Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India.
- Department of Chemistry, Dattajirao Kadam Arts, Science and Commerce, College, Ichalkaranji, Maharashtra, 416 115, India
| | - Pramod A Koyale
- Nanoscience Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India.
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Shrikant V Sadavar
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sagar D Delekar
- Nanoscience Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India.
| |
Collapse
|
2
|
Tong H, Li L, Wu C, Tao Z, Fang J, Guan C, Zhang X. Sea Urchin-Like NiCo-LDH Hollow Spheres Anchored on 3D Graphene Aerogel for High-Performance Supercapacitors. CHEMSUSCHEM 2024; 17:e202400142. [PMID: 38888714 DOI: 10.1002/cssc.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Indexed: 06/20/2024]
Abstract
To enhance the inherent poor conductivity and low cycling stability of dimetallic layered double hydroxides (LDHs) materials, designing a synergistic effect between EDLC capacitors and pseudocapacitors is an efficient strategy. In this paper, we utilized a solvothermal technique employing Co-glycerate as a precursor to prepare sea urchin-like NiCo-LDH hollow spheres anchored on a 3D graphene aerogel. The unique morphology of these hollow microspheres significantly expand the specific surface area and exposes more active sites, while reducing the volume changes of materials during long-term charging and discharging processes. The 3D graphene aerogel serves as a conductive skeleton, improving the material's electrical conductivity and buffering high current. The sea urchin-like NiCo-LDH hollow spheres anchored on 3D graphene aerogel (H-NiCo-LDH@GA) has a specific surface area of 51 m2 g-1 and the ID/IG value is 1.02. The H-NiCo-LDH@GA demonstrate a significant specific capacitance of 236.8 mAh g-1 at 1 A g-1, with a remarkable capacity retention rate of 63.1 % even at 20 A g-1. Even after 8000 cycles at 10 A g-1, the capacity retention still remains at 96.3 %, presenting excellent cycling stability.
Collapse
Affiliation(s)
- Hao Tong
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Lei Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Cunqi Wu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Zheng Tao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jiahao Fang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Chunyan Guan
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
3
|
Mamatali A, Wu D, Xie H, Xiao P. Mesoporous cobalt-manganese layered double hydroxides promote the activation of calcium sulfite for degradation and detoxification of metronidazole. J Colloid Interface Sci 2024; 666:512-528. [PMID: 38613974 DOI: 10.1016/j.jcis.2024.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Akbar Mamatali
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Tungkamani S, Intarasiri S, Sumarasingha W, Ratana T, Phongaksorn M. Enhancement of Ni-NiO-CeO 2 Interaction on Ni-CeO 2/Al 2O 3-MgO Catalyst by Ammonia Vapor Diffusion Impregnation for CO 2 Reforming of CH 4. Molecules 2024; 29:2803. [PMID: 38930868 PMCID: PMC11206949 DOI: 10.3390/molecules29122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ni-based catalysts have been widely used for the CO2 reforming of methane (CRM) process, but deactivation is their main problem. This study created an alternative electronic Ni-NiO-CeO2 interaction on the surface of 5 wt% Ni-5 wt% CeO2/Al2O3-MgO (5Ni5Ce(xh)/MA) catalysts to enhance catalytic potential simultaneously with coke resistance for the CRM process. The Ni-NiO-CeO2 network was developed on Al2O3-MgO through layered double hydroxide synthesis via our ammonia vapor diffusion impregnation method. The physical properties of the fresh catalysts were analyzed employing FESEM, N2 physisorption, and XRD. The chemical properties on the catalyst surface were analyzed employing H2-TPR, XPS, H2-TPD, CO2-TPD, and O2-TPD. The CRM performances of reduced catalysts were evaluated at 600 °C under ambient pressure. Carbon deposits on spent catalysts were determined quantitatively and qualitatively by TPO, FESEM, and XRD. Compared to 5 wt% Ni-5 wt% CeO2/Al2O3-MgO prepared by the traditional impregnation method, the electronic interaction of the Ni-NiO-CeO2 network with the Al2O3-MgO support was constructed along the time of ammonia diffusion treatment. The electronic interaction in the Ni-NiO-CeO2 nanostructure of the treated catalyst develops surface hydroxyl sites with an efficient pathway of OH* and O* transfer that improves catalytic activities and coke oxidation.
Collapse
Affiliation(s)
- Sabaithip Tungkamani
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (S.T.); (W.S.); (T.R.)
- Research and Development Center for Chemical Engineering Unit Operation and Catalyst Design (RCC), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Saowaluk Intarasiri
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong 21120, Thailand;
| | - Wassachol Sumarasingha
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (S.T.); (W.S.); (T.R.)
| | - Tanakorn Ratana
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (S.T.); (W.S.); (T.R.)
- Research and Development Center for Chemical Engineering Unit Operation and Catalyst Design (RCC), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Monrudee Phongaksorn
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (S.T.); (W.S.); (T.R.)
- Research and Development Center for Chemical Engineering Unit Operation and Catalyst Design (RCC), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
5
|
Lu Z, Zhao K, Guo H, Duan L, Sun H, Chen K, Liu J. In Situ Construction of NiCoMn-LDH Derived from Zeolitic Imidazolate Framework on Eggshell-Like Carbon Skeleton for High-Performance Flexible Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309814. [PMID: 38155521 DOI: 10.1002/smll.202309814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Active compounds based on LDH (ternary layered double hydroxide) are considered the perfect supercapacitor electrode materials on account of their superior electrochemical qualities and distinct structural characteristics, and flexible supercapacitors are an ideal option as an energy source for wearable electronics. However, the prevalent aggregation effect of LDH materials results in significantly compromised actual specific capacitance, which limits its broad practical applications. In this research, a 3D eggshell-like interconnected porous carbon (IPC) framework with confinement and isolation capability is designed and synthesized by using glucose as the carbon source to disperse the LDH active material and enhance the conductivity of the composite material. Second, by constructing NiCoMn-LDH nanocage structure based on ZIF-67 (zeolitic imidazolate framework-67) at the nanometer scale the obtained IPC/NiCoMn-LDH electrode material can expose more active sites, which allows to achieve excellent specific capacitance (2236 F g-1/ 310.6 mAh g-1 at 1 A g-1), good rate as well as the desired cycle stability (85.9% of the initial capacitance upon 5000 cycles test). The constructed IPC/NiCoMn-LDH//IPC ASC (asymmetric supercapacitor) exhibits superior capacitive property (135 F g-1/60.1 mAh g-1 at 0.5 A g-1) as well as desired energy density (40 Wh kg-1 at 800 W kg-1).
Collapse
Affiliation(s)
- Zhongqi Lu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Kai Zhao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Lejiao Duan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Huiru Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Kuiyong Chen
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong, 276000, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
6
|
Sun Z, Wang Y, Yang L, Liu J, Qi H, Huang Z, Wang X. RGO-Induced Flower-like Ni-MOF In Situ Self-Assembled Electrodes for High-Performance Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:584-593. [PMID: 38112556 DOI: 10.1021/acsami.3c14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Currently, the primary bottlenecks that hinder the widespread application of supercapacitors are low energy density and narrow potential windows. Herein, the hybrid supercapacitor with high energy density and wide potential window is constructed via an in situ self-assembly method employing RGO-induced flower-like MOF(Ni). Benefiting from the synergistic effect between RGO and MOF(Ni), the interfacial interactions are effectively improved, and the contact area with the electrolyte is enhanced, which increases the ion transfer kinetics and overall electrochemical performance. The MOF(Ni)@RGO electrode exhibits a specific capacitance of 1267.73 F g-1 at a current density of 1 A g-1. Crucially, the assembled MOF(Ni)@RGO//BC with a broad potential window and good stability employing a MOF(Ni)@RGO anode and biomass carbon cathode, combined with a 2 M PVA-KOH gel-electrolyte, achieves a maximum energy density of 70.16 Wh kg-1 at a power density of 2200.09 W kg-1, outperforming most reported supercapacitors. This hybrid supercapacitor exhibits excellent stability and high energy density, providing a novel strategy for further large-scale applications.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Bio-based Material Science & Technology, and College of Materials Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Yao Wang
- Key Laboratory of Bio-based Material Science & Technology, and College of Materials Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Lifei Yang
- Key Laboratory of Bio-based Material Science & Technology, and College of Materials Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Jingshuai Liu
- Key Laboratory of Bio-based Material Science & Technology, and College of Materials Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Houjuan Qi
- Key Laboratory of Bio-based Material Science & Technology, and College of Materials Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science & Technology, and College of Materials Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
7
|
Sumarasingha W, Tungkamani S, Ratana T, Supasitmongkol S, Phongaksorn M. Combined Steam and CO 2 Reforming of Methane over the Hierarchical Ni-ZrO 2 Nanosheets/Al 2O 3 Catalysts at Ultralow Temperature and under Low Steam. ACS OMEGA 2023; 8:46425-46437. [PMID: 38107949 PMCID: PMC10719918 DOI: 10.1021/acsomega.3c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
This research developed hierarchical 10 wt % Ni-1 wt % ZrO2/Al2O3 catalysts for combined steam and CO2 reforming of methane (CSCRM) reaction to produce syngas for gas-to-liquid (GTL) application under the ultralow temperature and low steam condition. The hierarchical nanosheet catalysts were prepared via a novel impregnation technique assisted by ammonia vapor diffusion with various times (1, 6, and 12 h) to develop the different magnitude of hierarchical nanosheets on the surface. Then, CSCRM at 600 °C was performed on the catalysts for 6 h. The results evidenced the improvement of H2 selectivity, reaching an appropriate H2/CO ratio (1.9-2.0) in FT subunits in the GTL process when nanosheets existed on the surface due to the increase in H2O adsorption-dissociation sites. The good dispersion of hierarchical nanosheets accompanied by the ZrO2 promoter successfully enhanced the CH4 conversion and the coke prevention through the spread nanosheets because of the increase in the number of active sites and the surface interaction. The interaction of hierarchical nanosheets created the H2O activation-dissociation sites that allowed CO2 to be selective on the oxygen vacancy sites, producing more OH* and OH* on the catalyst surface to resist the carbon deposition during CSCRM operation.
Collapse
Affiliation(s)
- Wassachol Sumarasingha
- Department
of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Sabaithip Tungkamani
- Department
of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Research
and Development Center for Chemical Engineering Unit Operation and
Catalyst Design (RCC), King Mongkut’s
University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Tanakorn Ratana
- Department
of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Research
and Development Center for Chemical Engineering Unit Operation and
Catalyst Design (RCC), King Mongkut’s
University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Somsak Supasitmongkol
- National
Energy Technology Center (ENTEC), National
Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin
Road, Klong 1, Klong Luang, Pathum Thani 12120, Thailand
| | - Monrudee Phongaksorn
- Department
of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Research
and Development Center for Chemical Engineering Unit Operation and
Catalyst Design (RCC), King Mongkut’s
University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
8
|
Ebrahimi-Koodehi S, Ghodsi FE, Mazloom J. Ni/Mn metal-organic framework decorated bacterial cellulose (Ni/Mn-MOF@BC) and nickel foam (Ni/Mn-MOF@NF) as a visible-light photocatalyst and supercapacitive electrode. Sci Rep 2023; 13:19260. [PMID: 37935728 PMCID: PMC10630428 DOI: 10.1038/s41598-023-46188-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023] Open
Abstract
Recently, metal-organic frameworks (MOFs) and hybrids with biomaterial are broadly investigated for a variety of applications. In this work, a novel dual-phase MOF has been grown on bacterial cellulose (BC) as a biopolymer nano-fibrous film (Ni/Mn-MOF@BC), and nickel foam (Ni/Mn-MOF@NF) using a simple reflux method to explore their potential for photocatalyst and energy storage applications. The studies showed that the prepared Mn and Ni/Mn-MOFs display different structures. Besides, the growth of MOFs on BC substantially changed the morphology of the samples by reducing their micro sized scales to nanoparticles. The nanosized MOF particles grown on BC served as a visible-light photocatalytic material. Regarding the high surface area of BC and the synergistic effect of two metal ions, Ni/Mn-MOF@BC with a lower band gap demonstrates remarkable photocatalytic degradation efficiency (ca. 84% within 3 h) against methylene blue (MB) dye under visible light, and the catalyst retained 65% of its initial pollutant removal properties after four cycles of irradiation. Besides, MOF powders deposited on nickel foam have been utilized as highly capacitive electrochemical electrodes. There, Ni/Mn-MOF@NF electrode also possesses outstanding electrochemical properties, showing a specific capacitance of 2769 Fg-1 at 0.5 Ag-1, and capacity retention of 94% after 1000 cycles at 10 Ag-1.
Collapse
Affiliation(s)
- Soheila Ebrahimi-Koodehi
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, Rasht, P.O. Box 413351914, Iran
| | - Farhad Esmaeili Ghodsi
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, Rasht, P.O. Box 413351914, Iran.
| | - Jamal Mazloom
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, Rasht, P.O. Box 413351914, Iran
| |
Collapse
|
9
|
Khodaee M, Dalir N, Feghhi F, Ansari N, Mohammadimasoudi M, Goudarzi A, Nasiri AF, Kolahdouz M, Mohseni SM. Enhancement in electrical conductivity of liquid crystals by graphene metal oxide composites. Sci Rep 2023; 13:11688. [PMID: 37468686 DOI: 10.1038/s41598-023-38157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Enhancing the electrical conductivity of liquid crystal (LC) circumvents challenges for application in advanced electronic components. Toward this, using additives made of different nanostructures that could result in functional LCs is suggested. In this paper, various concentrations of graphene (Gr)/metal-oxide (Fe3O4) nanocomposite (GMN) (0.0001-1 w%) were added to E7 nematic LC. We found that the role of anisotropic Gr flakes, their edges as well as surface-decorated-metal-oxide-additives have significant impact on electrical properties of E7. A range of appropriate additives of such a nanocomposite enhances the electrical conductivity of LCs. This effect can be traced through the decrease in the formation of GMN aggregates in the E7 and increase in the electrostatic field at the edges of the Gr sheets. Moreover, the presence of metal-oxide nanoclusters due to the presence of oxygen vacancies and defects facilitates the construction of conductive network for improving the charge transfer pathways and contributes to a stronger interaction of the Gr surface with charged species. These factors can provide Gr layers as dipole moments and lead to signal propagation in the dielectric medium. Our finding conveys a pathway toward significant enhancement of electrical conductivity in the LC family which can be useful for functional applications.
Collapse
Affiliation(s)
- M Khodaee
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - N Dalir
- Department of Renewable Energy, Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - F Feghhi
- Department of Physics, Alzahra University, Tehran, 19938, Iran
| | - N Ansari
- Department of Physics, Alzahra University, Tehran, 19938, Iran
| | - M Mohammadimasoudi
- Nano-Bio-Photonics Lab, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439957131, Iran
| | - A Goudarzi
- Nano-Bio-Photonics Lab, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439957131, Iran
| | - A F Nasiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran
| | - M Kolahdouz
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 1439957131, Iran.
| | - S M Mohseni
- Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839, Iran.
| |
Collapse
|
10
|
Hou L, Zhou X, Kong L, Ma Z, Su L, Liu Z, Shao G. Alkali-Etched NiCoAl-LDH with Improved Electrochemical Performance for Asymmetric Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1192. [PMID: 37049286 PMCID: PMC10097225 DOI: 10.3390/nano13071192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Hydrotalcite, first found in natural ores, has important applications in supercapacitors. NiCoAl-LDH, as a hydrotalcite-like compound with good crystallinity, is commonly synthesized by a hydrothermal method. Al3+ plays an important role in the crystallization of hydrotalcite and can provide stable trivalent cations, which is conducive to the formation of hydrotalcite. However, aluminum and its hydroxides are unstable in a strong alkaline electrolyte; therefore, a secondary alkali treatment is proposed in this work to produce cation vacancies. The hydrophilicity of the NiCoAl-OH surface with cation vacancy has been greatly improved, which is conducive to the wetting and infiltration of electrolyte in water-based supercapacitors. At the same time, cation vacancies generate a large number of defects as active sites for energy storage. As a result, the specific capacity of the NiCoAl-OH electrode after 10,000 cycles can be maintained at 94.1%, which is much better than the NiCoAl-LDH material of 74%.
Collapse
Affiliation(s)
- Liyin Hou
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province and Advanced Li-Ion Battery Engineering Laboratory, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of SciencesState, Zhejiang 315201, China
| | - Xufeng Zhou
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province and Advanced Li-Ion Battery Engineering Laboratory, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of SciencesState, Zhejiang 315201, China
| | - Lina Kong
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhipeng Ma
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Li Su
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhaoping Liu
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province and Advanced Li-Ion Battery Engineering Laboratory, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of SciencesState, Zhejiang 315201, China
| | - Guangjie Shao
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
11
|
Kumar J, Neiber RR, Abbas Z, Soomro RA, BaQais A, Amin MA, El-Bahy ZM. Hierarchical NiMn-LDH Hollow Spheres as a Promising Pseudocapacitive Electrode for Supercapacitor Application. MICROMACHINES 2023; 14:487. [PMID: 36838187 PMCID: PMC9964479 DOI: 10.3390/mi14020487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Layered double hydroxides (LDH) are regarded as attractive pseudocapacitive materials due to their impressive capacitive qualities that may be adjustable to their morphological features. However, the layered structure of LDH renders them susceptible to structural aggregation, which inhibits effective electrolyte transport and limits their practical applicability after limited exposure to active areas. Herein, we propose a simple template-free strategy to synthesize hierarchical hollow sphere NiMn-LDH material with high surface area and exposed active as anode material for supercapacitor application. The template-free approach enables the natural nucleation of Ni-Mn ions resulting in thin sheets that self-assemble into a hollow sphere, offering expended interlayer spaces and abundant redox-active active sites. The optimal NiMn-LDH-12 achieved a specific capacitance of 1010.4 F g-1 at a current density of 0.2 A g-1 with capacitance retention of 70% at 5 A g-1 after 5000 cycles with lower charge transfer impedance. When configured into an asymmetric supercapacitors (ASC) device as NiMn-LDH//AC, the material realized a specific capacitance of 192.4 F g-1 at a current density of 0.2 A g-1 with a good energy density of 47.9 Wh kg-1 and a power density of 196.8 W kg-1. The proposed morphological-tuning route is promising for designing template-free NiMn-LDHs spheres with practical pseudocapacitive characteristics.
Collapse
Affiliation(s)
- Jai Kumar
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Rana R. Neiber
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green, Process, and Engi-neering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zaheer Abbas
- Metallurgy and Materials Engineering Department, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Razium Ali Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| |
Collapse
|
12
|
Fabrication of hierarchical Ni nanowires@ NiCo-layered double hydroxide nanosheets core-shell hybrid arrays for high-performance hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Chaudhuri H, Yun YS. Synthesis and environmental applications of graphene oxide/layered double hydroxides and graphene oxide/MXenes: A critical review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Padalkar NS, Sadavar SV, Shinde RB, Patil AS, Patil UM, Magdum VV, Chitare YM, Kulkarni SP, Bulakhe RN, Parale VG, Gunjakar JL. 2D-2D nanohybrids of Ni–Cr-layered double hydroxide and graphene oxide nanosheets: Electrode for hybrid asymmetric supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Liu G, Wang G, Guo X, Hao X, Jin Z. Toilless sulfuration route to enhance the supercapacitor performance of nanoflower-like NiAl-layered double hydroxide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
In situ growth of glucose-intercalated LDHs on NiCo2S4 hollow nanospheres to enhance energy storage capacity for hybrid supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Shakir I, Almutairi Z, Shar SS. Fabrication of nanostructured iron-cobalt layered double hydroxide: An innovative approach for the facile synthesis. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Lv D. Layered double hydroxides functionalized by carbonaceous materials: from preparation to energy and environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30865-30891. [PMID: 35094279 DOI: 10.1007/s11356-021-18179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Along with the exponential demand for energy and pollution-free-environment, layered double hydroxides (LDHs) have gained extensive explorations because of their diverse nanostructures and tunable elemental compositions. However, the applications of LDHs are hindered by their poor activity, sluggish mass transfer, and aggregation. LDHs functionalized by carbonaceous materials (CMs) (LDH-CM) are expected to overcome the above disadvantages and even generate more excellent performance. This review first analyzes the research evolvement of LDH-CM composites during the past 25 years. Next, the advantages of LDH-CM composites are highlighted, such as morphology optimization, high electrical conductivity, more stable, good heat, and mass transfer performance. Following the synthetic strategies, including chemical assembly of LDHs and CMs, direct growth of LDH on CMs (two-step nucleation and growth and surface-confined growth) and direct CM formation on LDHs are fully discussed. Then, the recent progress achieved in LDH-CM composites for the application of energy storage and environmental protection is summarized in detail. In particular, the review illustrates the reasons why these constructing strategies can improve the performance of LDH-CM composites. Finally, challenges and future research prospects of LDH-CM composites are highlighted.
Collapse
Affiliation(s)
- Dong Lv
- National Natural Science Foundation of China, Beijing, 100085, People's Republic of China.
| |
Collapse
|
19
|
Zhang X, Xie N, Guo Y, Guo R, Jiang T, Wang Y, Wang Y, Niu D, Qi Y, Sun HB. Biochar microtube interconnected hydrotalcite nanosheets for the adsorption of aqueous Sb(III). NANOTECHNOLOGY 2022; 33:275704. [PMID: 35366650 DOI: 10.1088/1361-6528/ac639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Actuated by the non-ionic heavy metal of antimony (Sb) contaminants with undesired toxicity to the environment and human health, capturing Sb is urgent to remedy contaminated water. Herein, the lamellar MnCo hydrotalcite was grown on catkin-derived biochar through the in situ etching of ZIF-L to construct a hierarchical microtube@nanosheet hybrid (CLMH) for Sb immobilization. The adsorption behaviour and mechanism of trivalent antimony (Sb (III)) on the CLMH were investigated. The CLMH shows good pH applicability for capturing Sb(III) at pH from 2 to 9. The excellent adsorption capacity of CLMH for Sb(III) is 247.62 mg g-1at 303 K, and the endothermic process is proved by the positive value of ΔH0(10.54 kJ mol-1). The adsorption process is fitted with the intra-particle diffusion model, which can be described with external mass transfer, intraparticle diffusion in pores, and equilibrium stage. The adsorption mechanism is proved, which includes the bind of Metal-O-Sb bonds by inner-sphere complex, the embedding of Sb in the intercalation of hydrotalcite, redox between Mn and Sb, and functional groups dependent anchoring effect. The work benefits the understanding of the antimony removal behaviour over the hierarchical microtube@nanosheet hybrids.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People's Republic of China
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Nianyi Xie
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Ying Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Rongxiu Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People's Republic of China
| | - Tong Jiang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yao Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Dun Niu
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yang Qi
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
20
|
Microwave-assisted synthesis of hybrid supercapacitors consisting of Ni, Co-layered double hydroxide shell assembled around wood-derived activated carbon fiber core. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
An electrochemical sensor based on oxygen-vacancy cobalt–aluminum layered double hydroxides and hydroxylated multiwalled carbon nanotubes for catechol and hydroquinone detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Mahajan H, Cho S. Novel Au nanorod/Cu 2O composite nanoparticles for a high-performance supercapacitor. RSC Adv 2022; 12:9112-9120. [PMID: 35424862 PMCID: PMC8985136 DOI: 10.1039/d2ra00812b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Metal-oxide nanomaterials have attracted great interest in recent years due to their novel characteristics such as surface effect and quantum confinement. A fascinating Au nanorod (NR)/cuprous oxide core-shell composite (AuNR/Cu2O) was directly synthesized using a moderate one-pot facile green redox method and further utilized for energy storage applications in a supercapacitor. The synthesis mechanism is based on the use of reducing agents to form the core shell. The resultant composite was deposited on the surface of nickel foam as a result of redox reactions between Au and Cu via a hydrothermal method. AuNR/Cu2O composite nanoparticles (NPs) were characterized using various spectroscopic and microscopic techniques, including UV-vis and X-ray photoelectron spectroscopies, Brunauer-Emmett-Teller surface area analysis, X-ray diffractometry, and transmission electron microscopy. The AuNR/Cu2O composite NPs grow via the depositing of a 20-50 nm Cu2O shell on an AuNR core with dimensions of 5-20 nm in width and 40-70 nm in length. The as-synthesized AuNR/Cu2O composite NPs were effectively used as electrode materials in a supercapacitor, and their electrochemical performance was determined by cyclic voltammetry, galvanostatic charge-discharge measurements, and electrochemical impedance spectroscopy in 2 M KOH aqueous solution as an electrolyte. The composite NPs showed excellent average specific capacitance of 235 F g-1 at a current density of 2 A g-1 and durable cycling stability (96% even after 10 000 cycles). The higher efficiency of the AuNR/Cu2O composite NPs can be attributed to the presence of AuNR in the core. The AuNR/Cu2O composite NPs exhibit a high surface area and high electrical conductivity, which consequently result in their excellent specific capacitance and outstanding rate as an all-solid-state supercapacitor electrode.
Collapse
Affiliation(s)
- Hansa Mahajan
- Department of Electronics Engineering, Gachon University Republic of Korea
| | - Seongjae Cho
- Department of Electronics Engineering, Gachon University Republic of Korea
| |
Collapse
|
23
|
Swain N, Saravanakumar B, Mohanty S, Ramadoss A. Engineering of Thermally Converted 3D-NiO-Co3O4/Ni//3D-ϒ-Fe4N-C@Ni/SS Porous Electrodes for High-performance Supercapatteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Electrochemical performance of composite electrodes based on rGO, Mn/Cu metal-organic frameworks, and PANI. Sci Rep 2022; 12:664. [PMID: 35027598 PMCID: PMC8758744 DOI: 10.1038/s41598-021-04409-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022] Open
Abstract
Benzendicarboxylic acid (BDC)-based metal–organic frameworks (MOFs) have been widely utilized in various applications, including supercapacitor electrode materials. Manganese and copper have solid diamond frames formed with BDC linkers among transition metals chosen for MOF formation. They have shown the possibility to enlarge capacitance at different combinations of MOFs and polyaniline (PANI). Herein, reduced graphene oxide (rGO) was used as the matrix to fabricate electrochemical double-layer SCs. PANI and Mn/Cu-MOF's effect on the properties of electrode materials was investigated through electrochemical analysis. As a result, the highest specific capacitance of about 276 F/g at a current density of 0.5 A/g was obtained for rGO/Cu-MOF@PANI composite.
Collapse
|
25
|
Huang X, Sun R, Li Y, Jiang J, Li M, Xu W, Wang Y, Cong H, Tang J, Han S. Two-step electrodeposition synthesis of heterogeneous NiCo-layered double hydroxides@MoO3 nanocomposites on nickel foam with high performance for hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Tang Y, Guo W, Zou R. Nickel-based bimetallic battery-type materials for asymmetric supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214242] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Wang J, Luo Y, Ling L, Wang X, Cui SC, Li Z, Jiao Z, Cheng L. Sandwich-like NiCo-LDH/rGO with Rich Mesopores and High Charge Transfer Capability for Flexible Supercapacitors. CrystEngComm 2022. [DOI: 10.1039/d2ce00565d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered double metal hydroxides (LDHs) have been widely used in the energy storage field due to adjustable composition and interlayer spacing. However, easy to agglomerate, poor electrical conductivity, and large...
Collapse
|
28
|
Li Z, Huang Y, Zhang Z, Wang J, Han X, Zhang G, Li Y. Hollow C-LDH/Co 9S 8 nanocages derived from ZIF-67-C for high- performance asymmetric supercapacitors. J Colloid Interface Sci 2021; 604:340-349. [PMID: 34271490 DOI: 10.1016/j.jcis.2021.06.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
The design of supercapacitor electrode materials greatly depends on the rational construction of nanostructures and the effective combination of different active materials. Due to the poor electrical conductivity and mechanical strength, nickel-cobalt double hydroxide (NiCo-LDH) cannot reach the theoretical high specific capacitance value, while Co9S8 shows many interesting features, such as excellent electrochemical properties, high conductivity, and greatly improved redox reactions. Therefore, we prepared ZIF-67-C derived hollow NiCo-LDH (C-LDH)/Co9S8 nanocages containing two components of Co9S8 and NiCo-LDH through a multistep transformation method. The prepared C-LDH/Co9S8 nanoparticles showed a hollow rhomboid dodecahedron structure, and many NiCo-LDH nanosheets were reasonably distributed on the surface. In the three-electrode test, it can be obtained that its specific capacitance is 1654 F·g-1 when current density is 2 A·g-1 and 82.5% capacitance retention after 5000 cycles. Moreover, asymmetric supercapacitors (ASCs) prepared with C-LDH/Co9S8 as cathode and AC as anode can achieve a large energy density of 47.3 Wh·kg-1 under the condition of high power density of 1505 W·kg-1. After 10,000 cycles, capacitance retention rate is 80.9%, exhibit excellent cycle performance, suggesting the great potential of hollow C-LDH/Co9S8 nanocages in the application of supercapacitors.
Collapse
Affiliation(s)
- Zengyong Li
- The MOE Key Laboratory of Material Physics and Chemistry Under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ying Huang
- The MOE Key Laboratory of Material Physics and Chemistry Under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Zheng Zhang
- The MOE Key Laboratory of Material Physics and Chemistry Under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jiaming Wang
- The MOE Key Laboratory of Material Physics and Chemistry Under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaopeng Han
- The MOE Key Laboratory of Material Physics and Chemistry Under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Guozheng Zhang
- The MOE Key Laboratory of Material Physics and Chemistry Under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yan Li
- The MOE Key Laboratory of Material Physics and Chemistry Under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
29
|
Mohan H, Yoo S, Thimmarayan S, Oh HS, Kim G, Seralathan KK, Shin T. Nickel decorated manganese oxynitride over graphene nanosheets as highly efficient visible light driven photocatalysts for acetylsalicylic acid degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117864. [PMID: 34352631 DOI: 10.1016/j.envpol.2021.117864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
In this work, we prepared nanocomposites of nickel-decorated manganese oxynitride on graphene nanosheets and demonstrated them as photocatalysts for degradation of acetylsalicylic acid (ASA). The catalyst exhibited a high degradation efficiency over ASA under visible light irradiation and an excellent structural stability after multiple uses. Compared to manganese oxide (MnO) and manganese oxynitride (MnON) nanoparticles, larger specific surface area and smaller band gap were observed for the nanocomposite accounting for the enhanced photocatalytic efficiency. Besides the compositional effect of the catalyst, we also examined the influence of various experimental parameters on the degradation of ASA such as initial concentration, catalyst dose, initial pH and additives. The best performance was obtained for the nanocomposite when the catalyst dose was 10 mg/mL and the initial pH 3. Detection of intermediates during photocatalysis showed that ASA undergoes hydroxylation, demethylation, aromatization, ring opening, and finally complete mineralization into CO2 and H2O by reactive species. For practical applications as a photocatalyst, cytotoxicity of the nanocomposite was also evaluated, which revealed its insignificant impact on the cell viability. These results suggest the nanocomposite of nickel-decorated manganese oxynitride on graphene nanosheets as a promising photocatalyst for the remediation of ASA-contaminated water.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Suhwan Yoo
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Srivalli Thimmarayan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Hyeon Seung Oh
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Gitae Kim
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Taeho Shin
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
30
|
Xie N, Zhang X, Guo Y, Guo R, Wang Y, Sun Z, Li H, Jia H, Jiang T, Gao J, Wang J, Niu D, Sun HB. Hollow Mn/Co-LDH produced by in-situ etching-growth of MOF: Nanoreactant for steady chemical immobilization of antimony. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Fu H, Zhang A, Jin F, Guo H, Huang W, Cheng W, Liu J. Origami and layered-shaped ZnNiFe-LDH synthesized on Cu(OH) 2 nanorods array to enhance the energy storage capability. J Colloid Interface Sci 2021; 607:1269-1279. [PMID: 34571311 DOI: 10.1016/j.jcis.2021.09.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/17/2022]
Abstract
The combination of layered nanorod arrays with unique core-shell structure and transition metal layered double hydroxide (LDH) is considered as a feasible solution to improve the electrochemical performances of capacitor electrode. In this study, layered ZnNiFe-LDH@Cu(OH)2/CF core-shell nanorod arrays, which consist of ultrathin ZnNiFe-LDHs nanosheet shells and ordered Cu(OH)2 nanorod inner cores, are successfully designed and fabricated by a typical hydrothermal way and a simple in situ oxidation reaction. The electrode prepared using ZnNiFe-LDH@Cu(OH)2/CF nanomaterial reveals an remarkable area capacitance of 6100 mF cm-2 at 3 mA cm-2 current density, which is excellently superior than those of ZnFe-LDH@Cu(OH)2/CF, NiFe-LDH@Cu(OH)2/CF, Cu(OH)2/CF and CF. Additionally, the capacitance retention remains as high as 83.4% after 5000 cycles and a very small Rs (0.567 Ω) can be observed. In addition, an asymmetric supercapacitor device is successfully fabricated employing ZnNiFe-LDH@Cu(OH)2/CF. Meanwhile, the ZnNiFe-LDH@Cu(OH)2/CF//AC device can achieve an energy density of 44 Wh kg-1 and a corresponding power density of 720 W kg-1 and possess the capability to light up a multi-function monitor for 33 min just using two ASC equipments connected in series. Therefore, the prepared ZnNiFe-LDH@Cu(OH)2/CF composite materials with unique structure has great application potential in energy storage devices.
Collapse
Affiliation(s)
- Hucheng Fu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Aitang Zhang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.
| | - Fuhao Jin
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Hanwen Guo
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Wenjun Huang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Wenting Cheng
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
32
|
Li Y, Hu B, Hu B, Xu C, Yang S, Yu J, Zhang B, Liu Y, Yu D, Chen C. In Situ Fabrication of NiMn‐LDH@MWCNT Composites with Hierarchical Structure for Superior Electrochemical Energy Storage. ChemElectroChem 2021. [DOI: 10.1002/celc.202100833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan Li
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P R China
| | - Bihao Hu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P R China
| | - Bingbing Hu
- College of Materials Science and Engineering Chongqing Jiaotong University Chongqing 400074 P R China
| | - Chuanlan Xu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P R China
| | - Shu Yang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P R China
| | - Jingjing Yu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P R China
| | - Biao Zhang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P R China
| | - Yuping Liu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P R China
| | - Danmei Yu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P R China
| | - Changguo Chen
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P R China
| |
Collapse
|
33
|
Vandana M, Nagaraju YS, Ganesh H, Veeresh S, Vijeth H, Basappa M, Devendrappa H. A SnO 2QDs/GO/PPY ternary composite film as positive and graphene oxide/charcoal as negative electrodes assembled solid state asymmetric supercapacitor for high energy storage applications. RSC Adv 2021; 11:27801-27811. [PMID: 35480749 PMCID: PMC9037791 DOI: 10.1039/d1ra03423e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022] Open
Abstract
The work demonstrates tin oxide quantum dots/graphene oxide/polypyrrole (SnO2QDs/GO/PPY) ternary composite deposited on titanium foil as a positive electrode and graphene oxide (GO)/charcoal on titanium foil as negative electrode separated by polyvinyl alcohol/potassium hydroxide (PVA/KOH) gel-electrolyte as a solid-state asymmetric supercapacitor for high energy storage applications. Here, tin oxide quantum dots (SnO2QDs) were successfully synthesized by a hydrothermal technique, and SnO2QDs/GO/PPY ternary composite was synthesized by an in situ method with pyrrole monomer, SnO2, and GO. A pH value controlled, which maintained the uniform size of SnO2QDs dispersed on PPY, through GO ternary composite was used for fabricating the asymmetric supercapacitor electrode with the configuration (SnO2QDs/GO/PPY)/GO/charcoal (85 : 10 : 5). The device achieved the highest specific capacitance of 1296 F g-1, exhibited an energy density of 29.6 W h kg-1 and the highest power density of 5310.26 W kg-1 in the operating voltage from 0 to 1.2 V. The device also possessed excellent reliability and retained the capacitance of 90% after 11 000 GCD cycles. This ternary composite is a prominent material for potential applications in next-generation energy storage and portable electronic devices.
Collapse
Affiliation(s)
- M Vandana
- Department of Physics, Mangalore University Mangalagangothri Mangalore 574199 India
| | - Y S Nagaraju
- Department of Physics, Mangalore University Mangalagangothri Mangalore 574199 India
| | - H Ganesh
- Department of Physics, Mangalore University Mangalagangothri Mangalore 574199 India
| | - S Veeresh
- Department of Physics, Mangalore University Mangalagangothri Mangalore 574199 India
| | - H Vijeth
- Department of Physics, Mangalore Institute of Technology and Engineering Moodbidri Badaga Mijar Karnataka 574225 India
| | - M Basappa
- Department of Physics, Mangalore University Mangalagangothri Mangalore 574199 India
| | - H Devendrappa
- Department of Physics, Mangalore University Mangalagangothri Mangalore 574199 India
| |
Collapse
|
34
|
Zhang Y, Xu H, Lu S. Preparation and application of layered double hydroxide nanosheets. RSC Adv 2021; 11:24254-24281. [PMID: 35479011 PMCID: PMC9036865 DOI: 10.1039/d1ra03289e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Layered double hydroxides (LDH) with unique structure and excellent properties have been widely studied in recent years. LDH have found widespread applications in catalysts, polymer/LDH nanocomposites, anion exchange materials, supercapacitors, and fire retardants. The exfoliated LDH ultrathin nanosheets with a thickness of a few atomic layers enable a series of new opportunities in both fundamental research and applications. In this review, we mainly summarize the LDH exfoliation methods developed in recent years, the recent developments for the direct synthesis of LDH single-layer nanosheets, and the applications of LDH nanosheets in catalyzing oxygen evolution reactions, crosslinkers, supercapacitors and delivery carriers.
Collapse
Affiliation(s)
- Yaping Zhang
- Pharmacy College, Henan University of Chinese Medicine Zhengzhou 450008 PR China
| | - Huifang Xu
- Pharmacy College, Henan University of Chinese Medicine Zhengzhou 450008 PR China
| | - Song Lu
- Pharmacy College, Henan University of Chinese Medicine Zhengzhou 450008 PR China
| |
Collapse
|
35
|
MgCo2O4@NiMn layered double hydroxide core-shell nanocomposites on nickel foam as superior electrode for all-solid-state asymmetric supercapacitors. J Colloid Interface Sci 2021; 592:455-467. [DOI: 10.1016/j.jcis.2021.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
|
36
|
Yao J, Jia Y, Han Q, Yang D, Pan Q, Yao S, Li J, Duan L, Liu J. Ternary flower-sphere-like MnO 2-graphite/reduced graphene oxide nanocomposites for supercapacitor. NANOTECHNOLOGY 2021; 32:185401. [PMID: 33440357 DOI: 10.1088/1361-6528/abdb62] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical fabrication of a nanocomposite structure for electrode materials to regulate the ion diffusion channels and charge transfer resistances and Faradaic active sites is a versatile strategy towards building a high-performance supercapacitor. Here, a new ternary flower-sphere-like nanocomposite MnO2-graphite (MG)/reduced graphene oxide (RGO) was designed using the RGO as a coating for the MG. MnO2-graphite (MnO2-4) was obtained by KMnO4 oxidizing the pretreated graphite in an acidic medium (pH = 4). The GO coating was finally reduced by the NaBH4 to prepare the ternary nanocomposite MG. The microstructures and pore sizes were investigated by x-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and nitrogen adsorption/desorption. The electrochemical properties of MG were systematically investigated by the cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy in Na2SO4 solution. The MG as an electrode material for supercapacitor exhibits a specific capacitance of 478.2 and 454.6 F g-1 at a current density of 1.0 and 10.0 A g-1, respectively. In addition, the capacitance retention was 90% after 8,000 cycles. The ternary nanocomposite enhanced electrochemical performance originates from the specific flower-sphere-like morphology and coating architecture bringing higher specific surface area and lower charge transfer resistance (Rct).
Collapse
Affiliation(s)
- Jun Yao
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Yongfeng Jia
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Qingli Han
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Daotong Yang
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Qingjiang Pan
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Shanshan Yao
- School of Chinese Medicine, The Chinese University of Hong Kong (CUHK), Shatin, NT, Hong Kong SAR, People's Republic of China
| | - Jiuming Li
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Limei Duan
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| |
Collapse
|
37
|
Hamad HA, Nageh H, El-Bery HM, Kasry A, Carrasco-Marín F, Elhady OM, Soliman AMM, El-Remaily MAEAAA. Unveiling the exceptional synergism-induced design of Co-Mg-Al layered triple hydroxides (LTHs) for boosting catalytic activity toward the green synthesis of indol-3-yl derivatives under mild conditions. J Colloid Interface Sci 2021; 599:227-244. [PMID: 33945970 DOI: 10.1016/j.jcis.2021.04.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022]
Abstract
The current study provides a novel insight into the role of synergism of the changes in Mg2+/ Al3+ in the best catalytic activity of indol-3-yl derivatives. A series of Co-Mg-Al layered triple hydroxides (LTHs) catalysts were produced by altering the Al3+/Mg2+ ratio with respect to Co2+. The physicochemical properties of LTHs were well characterized by ICP-AES, XRD, FTIR, FE-SEM, BET, Zeta-sizer, and VSM. The results show that the sample CMA4 (Co2+:Mg2+:Al3+ 2:4:4) is an exception to the physicochemical characteristics of the produced Co-Mg-Al LTHs, which is due to the synergism between the changes in Mg2+ and Al3+. To the best of our knowledge, this is the first study to report the synthesis of indol-3-yl derivatives from indole-3-carbaldehyde using Co-Mg-Al LTHs as highly efficient heterogeneous catalysts, which is an extremely appealing path. The selectivity of the synthesis was studied by condensing various nucleophiles through the one-pot method that established superior reactivity under mild conditions. Notably, the results show that the Co-Mg-Al LTHs system exhibited an extraordinarily catalytic activity, with the highest yield (98%) being obtained under the following optimal conditions: the concentration of Co-Mg-Al LTHs = 5 mol%, 30 min., water/ethanol as solvent. Furthermore, the reusable studies exhibited that the catalysts were found to be stable and reusable for up to six cycles without substantial loss of catalytic activity. Finally, a plausible reaction mechanism of the Co-Mg-Al LTHs system for indol-3-yl derivatives was put forward according to our comprehensive analysis. Our work illuminates a cheap and flexible strategy for the synthesis of indol-3-yl derivatives using Co-Mg-Al LTHs.
Collapse
Affiliation(s)
- Hesham A Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box 21934 Alexandria, Egypt.
| | - Hassan Nageh
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, 11837 Cairo, Egypt
| | - Haitham M El-Bery
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt
| | - Amal Kasry
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, 11837 Cairo, Egypt
| | - Francisco Carrasco-Marín
- Adsorption and Catalysis Lab., Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Omar M Elhady
- Department of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Ahmed M M Soliman
- Department of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | | |
Collapse
|
38
|
Annalakshmi M, Kumaravel S, Chen TW, Chen SM, Lou BS. 3D Flower-like NiCo Layered Double Hydroxides: An Efficient Electrocatalyst for Non-Enzymatic Electrochemical Biosensing of Hydrogen Peroxide in Live Cells and Glucose in Biofluids. ACS APPLIED BIO MATERIALS 2021; 4:3203-3213. [PMID: 35014407 DOI: 10.1021/acsabm.0c01600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, a hierarchical structure of flower-like NiCo layered double hydroxides (NiCo LDH) microspheres composed of three-dimensional (3D) ultrathin nanosheets was successfully synthesized via a facile hydrothermal approach. The formation of NiCo LDH was confirmed by various physicochemical studies, and the NiCo LDH-modified glassy carbon electrode was used as an efficient dual-functional electrocatalyst for non-enzymatic glucose and hydrogen peroxide (H2O2) biosensor. The host matrix of hydrotalcite NiCo LDH exhibits the enhanced electrocatalytic sensing performances with a quick response time (<3 s), wide linear range (50 nM-18.95 mM and 20 nM-11.5 mM) and lowest detection limits (S/N = 3) (10.6 and 4.4 nM) toward glucose and H2O2, and also it exhibits good stability, selectivity, and reproducibility. In addition, this biosensor was successfully utilized to the real-time detection of endogenous H2O2 produced from live cells and glucose in various biological fluids, and demonstrates that the as synthesized NiCo LDH may provide a successful pathway for physiological and clinical pathological diagnosis.
Collapse
Affiliation(s)
- Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Sakthivel Kumaravel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.,Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Bih-Show Lou
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC.,Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| |
Collapse
|
39
|
Liu W, Speranza G. Tuning the Oxygen Content of Reduced Graphene Oxide and Effects on Its Properties. ACS OMEGA 2021; 6:6195-6205. [PMID: 33718710 PMCID: PMC7948250 DOI: 10.1021/acsomega.0c05578] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/05/2021] [Indexed: 05/24/2023]
Abstract
The need to recover the graphene properties in terms of electrical and thermal conductivity calls for the application of reduction processes leading to the removal of oxygen atoms from the graphene oxide sheet surface. The recombination of carbon-carbon double bonds causes a partial recovery of the original graphene properties mainly limited by the presence of residual oxygen atoms and lattice defects. However, the loss of polar oxygen-based functional groups renders the material dispersibility rather complicated. In addition, oxygen-containing functional groups are reaction sites useful to further bind active molecules to engineer the reduced graphene sheets. For these reasons, a variety of chemical processes are described in the literature to reduce the graphene oxide. However, it is greatly important to select a chemical process enabling a thin modulation of the residual oxygen content thus tuning the properties of the final product. In this work, we will present a chemical-processing technique based on the hydroiodic acid to carefully control the degree of residual oxidation. Graphene oxides were reduced using hydroiodic acid with concentrations from 0.06 to 0.95 mol L-1. Their properties were characterized in detail and tested, and the results showed that their oxygen content was finely tuned from 33.6 to 10.7 atom %. This allows carefully tailoring the material properties with respect to the desired application, which is exemplified by the variation of the bulk resistance from 92 Ω to 14.8 MΩ of the film from the obtained rGO.
Collapse
Affiliation(s)
- Wei Liu
- Fondazione
Bruno Kessler, Via Sommarive 18, Trento 38123, Italy
| | - Giorgio Speranza
- Fondazione
Bruno Kessler, Via Sommarive 18, Trento 38123, Italy
- Department
of Industrial Engineering, University of
Trento, Via Sommarive
9, Trento 38123, Italy
- Istituto
di Fotonica e Nanotecnologie, IFN-CNR, Via Alla Cascata 56/C, Trento 38123, Italy
| |
Collapse
|
40
|
Wu L, Zhou X, Wan G, Tang Y, Shi S, Xu X, Wang G. Novel hierarchical CuNiAl LDH nanotubes with excellent peroxidase-like activity for wide-range detection of glucose. Dalton Trans 2021; 50:95-102. [PMID: 33284937 DOI: 10.1039/d0dt03288c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel hierarchical CuNiAl layered double hydroxide (CuNiAl LDH) nanotubes were prepared with in situ transformation of Al2O3 produced using the atomic layer deposition (ALD) method. Based on the characterizations using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrometry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), CuNiAl LDH displays a typical nanotube-like structure consisting of uniform ultrathin nanoflakes. It is also confirmed that nitrate precursors play a crucial role in the formation of the LDH hierarchical structure. The unique hierarchical tube-like structure for CuNiAl LDH can supply more active sites and higher surface areas, leading to outstanding peroxidase mimicking property. The kinetic analyses indicate that the catalytic behavior of CuNiAl LDH follows classic Michaelis-Menten models and the affinity of CuNiAl LDH to the substrate is significantly higher than horseradish peroxidase. A simple and label-free method was developed for the colorimetric detection of glucose. As low as 2.9 μM of glucose can be detected with a broad linear range from 10 to 200 μM. The established method is also proved to be suitable for glucose detection in juice samples.
Collapse
Affiliation(s)
- Lihong Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137563] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Arun T, Mohanty A, Rosenkranz A, Wang B, Yu J, Morel MJ, Udayabhaskar R, Hevia SA, Akbari-Fakhrabadi A, Mangalaraja R, Ramadoss A. Role of electrolytes on the electrochemical characteristics of Fe3O4/MXene/RGO composites for supercapacitor applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
CoMnO 2-Decorated Polyimide-Based Carbon Fiber Electrodes for Wire-Type Asymmetric Supercapacitor Applications. Molecules 2020; 25:molecules25245863. [PMID: 33322446 PMCID: PMC7763561 DOI: 10.3390/molecules25245863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
In this work, we report the carbon fiber-based wire-type asymmetric supercapacitors (ASCs). The highly conductive carbon fibers were prepared by the carbonized and graphitized process using the polyimide (PI) as a carbon fiber precursor. To assemble the ASC device, the CoMnO2-coated and Fe2O3-coated carbon fibers were used as the cathode and the anode materials, respectively. Herein, the nanostructured CoMnO2 were directly deposited onto carbon fibers by a chemical oxidation route without high temperature treatment in presence of ammonium persulfate (APS) as an oxidizing agent. FE-SEM analysis confirmed that the CoMnO2-coated carbon fiber electrode exhibited the porous hierarchical interconnected nanosheet structures, depending on the added amount of APS, and Fe2O3-coated carbon fiber electrode showed a uniform distribution of porous Fe2O3 nanorods over the surface of carbon fibers. The electrochemical properties of the CoMnO2-coated carbon fiber with the concentration of 6 mmol APS presented the enhanced electrochemical activity, probably due to its porous morphologies and good conductivity. Further, to reduce the interfacial contact resistance as well as improve the adhesion between transition metal nanostructures and carbon fibers, the carbon fibers were pre-coated with the Ni layer as a seed layer using an electrochemical deposition method. The fabricated ASC device delivered a specific capacitance of 221 F g-1 at 0.7 A g-1 and good rate capability of 34.8% at 4.9 A g-1. Moreover, the wire-type device displayed the superior energy density of 60.2 Wh kg-1 at a power density of 490 W kg-1 and excellent capacitance retention of 95% up to 3000 charge/discharge cycles.
Collapse
|
44
|
Liu R, Wang Y, Sun S, Chen C, Wu X. CoNi layered double hydroxide anchored on N-doped carbon coated carbon nanotubes network with 3D Core-shell structure for all-solid-state supercapacitors. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Wang G, Jin Z, Zhang W. Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors. J Colloid Interface Sci 2020; 577:115-126. [DOI: 10.1016/j.jcis.2020.05.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
|
46
|
Three-dimensional heterostructured polypyrrole/nickel molybdate anchored on carbon cloth for high-performance flexible supercapacitors. J Colloid Interface Sci 2020; 574:355-363. [DOI: 10.1016/j.jcis.2020.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
|
47
|
Wang WD, Zhang PP, Gao SQ, Wang BQ, Wang XC, Li M, Liu F, Cheng JP. Core-shell nanowires of NiCo 2O 4@α-Co(OH) 2 on Ni foam with enhanced performances for supercapacitors. J Colloid Interface Sci 2020; 579:71-81. [PMID: 32574730 DOI: 10.1016/j.jcis.2020.06.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/18/2023]
Abstract
The composites of NiCo2O4 with unique structures are extensively explored as promising electrodes. In this work, core-shell structured nanowires anchored on nickel foam are synthesized by the hydrothermal synthesis of NiCo2O4 as core and subsequent electrodeposition of α-Co(OH)2 as shell. The core-shell composites exhibit enhanced electrochemical performances ascribing to the synergistic reactions from both materials, showing higher specific capacitance than any single component. By changing the deposition time, the mass loading of α-Co(OH)2 can be easily controlled. The electrochemical performances of the hybrid electrodes are diverse with the mass loading of Co(OH)2. The optimized hybrid electrode with 3 mins electrodeposition exhibits the highest specific capacitance (1298 F g-1 at 1 A g-1) among all electrodes. The redox reaction is a main contributor to the total specific capacitance through electrochemical kinetics analysis. An asymmetric supercapacitor assembled by the optimized material as positive electrode and activated carbon as negative electrode can achieve a relatively high energy density of 39.7 Wh kg-1 at a power density of 387.5 W kg-1 (at 0.5 A g-1) in a voltage of 1.55 V.
Collapse
Affiliation(s)
- W D Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - P P Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - S Q Gao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - B Q Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - X C Wang
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - M Li
- Research Institute of Narada Power Source Co., Ltd, Hangzhou 311305, China
| | - F Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - J P Cheng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
48
|
Xie L, Li H, Yang Z, Zhao X, Zhang H, Zhang P, Cao Z, He J, Pan P, Liu J, Wei J, Song D, Qi W. Facile large-scaled fabrication of graphene-like materials by ultrasonic assisted shear exfoliation method for enhanced performance on flexible supercapacitor applications. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01189-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Verma S, Gupta V, Khosla A, Kumar S, Arya S. High performance asymmetric supercapacitor based on vertical nanowire arrays of a novel Ni@Co-Fe LDH core@shell as negative and Ni(OH) 2 as positive electrode. NANOTECHNOLOGY 2020; 31:245401. [PMID: 32109899 DOI: 10.1088/1361-6528/ab7b07] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An efficient synthesis of the electrode material with abundant active sites is imperative for obtaining a flexible supercapacitor with excellent electrochemical performance. Herein, a novel flexible Ni@Co-Fe LDH core-shell nanowires supercapacitor negative electrode is synthesized using polycarbonate membrane on a copper substrate via an electrochemical deposition technique. The synthesized battery-type negative electrode exhibits remarkable specific capacitance of 1289 F g-1 at 1 A g-1 and excellent cycling stability with 76.66% capacitive retention after 5000 cycles. Furthermore, the Ni(OH)2//Ni@Co-Fe LDH nanowires based asymmetric supercapacitor exhibits excellent cycling stability of 90.49% after 1000 cycles with a highest energy density of 68 Wh kg-1 at 0.38 KW kg-1, and a good energy density of 31.8 Wh kg-1 is still attained at a high power density of 6 KW kg-1. For practical demonstration, a white LED of 3.3 V is lit by using two asymmetrical supercapacitor devices connected in series. The device offers a favorable and effective pathway for advanced energy storage.
Collapse
Affiliation(s)
- Sonali Verma
- Department of Physics, University of Jammu, Jammu, Jammu and Kashmir-180006, India
| | | | | | | | | |
Collapse
|
50
|
Gao X, Wang P, Pan Z, Claverie JP, Wang J. Recent Progress in Two-Dimensional Layered Double Hydroxides and Their Derivatives for Supercapacitors. CHEMSUSCHEM 2020; 13:1226-1254. [PMID: 31797566 DOI: 10.1002/cssc.201902753] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/28/2019] [Indexed: 06/10/2023]
Abstract
High-performance supercapacitors have attracted great attention due to their high power, fast charging/discharging, long lifetime, and high safety. However, the generally low energy density and overall device performance of supercapacitors limit their applications. In recent years, the design of rational electrode materials has proven to be an effective pathway to improve the capacitive performances of supercapacitors. Layered double hydroxides (LDHs), have shown great potential in new-generation supercapacitors, due to their unique two-dimensional layered structures with a high surface area and tunable composition of the host layers and intercalation species. Herein, recent progress in LDH-based, LDH-derived, and composite-type electrode materials targeted for applications in supercapacitors, by tuning the chemical/metal composition, growth morphology, architectures, and device integration, is reviewed. The complicated relationships between the composition, morphology, structure, and capacitive performance are presented. A brief projection is given for the challenges and perspectives of LDHs for energy research.
Collapse
Affiliation(s)
- Xiaorui Gao
- School of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, PR China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, 2500, Boulevard de l'Universite, Sherbrooke, J1K 2R1, Québec, Canada
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Jerome P Claverie
- Department of Chemistry, University of Sherbrooke, 2500, Boulevard de l'Universite, Sherbrooke, J1K 2R1, Québec, Canada
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| |
Collapse
|