1
|
Hagheh Kavousi Z, Abdallah L, Ghorbanloo M, Bonniol V, Rebiere B, Cornu D, Bechelany M, Holade Y. Galvanostatic Electroshock Synthesis of Low Loading Au-Pt Nanoalloys Onto Gas Diffusion Electrodes as Multifunctional Electrocatalysts for a Glycerol-Fed Electrolyzer. CHEMSUSCHEM 2024; 17:e202400996. [PMID: 38965888 PMCID: PMC11660746 DOI: 10.1002/cssc.202400996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Water electrolysis is increasingly considered a viable solution for meeting the world's growing energy demands and mitigating environmental issues. An inventive strategy to mitigate the energy requirements involves substituting the energy-intensive oxygen evolution reaction (OER) with biomass-derived glycerol electrooxidation. Nonetheless, the synthesis of electrocatalysts for controlling the selectivity towards added-value chemicals at the anode and efficient H2 generation at the cathode remains a critical bottleneck. Herein, we implemented a galvanostatic electroshock synthesis approach to control the reduction kinetics of Au(III) and Pt(IV) to grow ultra-low amount of gold-platinum alloys on a gas diffusion electrode (12-26 μgmetal cm-2) for glycerol-fed hydroxide anion exchange membrane based electrolyzer. The symmetric GDE-Au100-xPtx||GDE-Au100-xPtx systems showed a notable improvement in electrolyzer performance (GDE-Au64Pt36=201 mA cm-2) as compared to monometallic versions (GDE-Au100Pt0=18 mA cm-2, GDE-Au0Pt100=81 mA cm-2). Chromatography (HPLC) analysis underscores the critical importance of bulk electrolysis methodology (galvanostatic vs potentiostatic) for the efficient conversion of glycerol into high-value-added products. Regarding the electrical energy required to produce 1 kg of H2 for such an electrolyzer fed at the anode with glycerol, our results confirm a drastic decrease by a factor of at least two compared with conventional water electrolysis.
Collapse
Affiliation(s)
- Zahra Hagheh Kavousi
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
- Department of Chemistry, Faculty of SciencesUniversity of ZanjanP.O. BoxZanjan4537138791Iran
| | - Layal Abdallah
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
| | - Massomeh Ghorbanloo
- Department of Chemistry, Faculty of SciencesUniversity of ZanjanP.O. BoxZanjan4537138791Iran
| | - Valerie Bonniol
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
| | - Bertrand Rebiere
- Institut Charles Gerhardt, ICGM, UMR 5253Univ Montpellier, ENSCM, CNRSMontpellierFrance
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
- French Research Network on Hydrogen (FRH2)Research Federation No. 2044 CNRS CNRS BP32229Nantes CEDEX 3 44322France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
- Functional Materials GroupGulf University for Science and Technology (GUST)Mubarak Al-Abdullah32093Kuwait
| | - Yaovi Holade
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
- French Research Network on Hydrogen (FRH2)Research Federation No. 2044 CNRS CNRS BP32229Nantes CEDEX 3 44322France
| |
Collapse
|
2
|
Li P, Zhou Z, Qiu D, Peng L. Insight into Oxygen Transport in Proton Exchange Membrane Water Electrolyzers by In Situ X-Ray Characterization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405658. [PMID: 39324840 DOI: 10.1002/advs.202405658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/04/2024] [Indexed: 09/27/2024]
Abstract
The proton exchange membrane water electrolyzer (PEMWE) is one of the most promising electrochemical energy conversion devices for hydrogen production, while still limited by performance bottlenecks at high current densities, due to the lack of mass transfer insights. To investigate the mechanisms of oxygen transport inside the PEMWE at high current density and its relation to electrolytic performance. Operational in situ x-ray imaging is utilized to simultaneously characterize the bubble behavior and voltage response in a novel designed visual mini-cell, and it is identified that oxygen evolution and transport in the PEMWE follow the process of bubble nucleation, growth, and detachment. Based on the results of mini-cells with three porous transport layers (PTLs) up to 9 A cm-2 operation, it revealed that critical current densities exist for both carbon-based and titanium-based PTLs. Once exceeding the critical current density, the cell voltage can no longer be stabilized and the cell exhibits a significant oxygen overpotential. To illustrate this, the concept of interfacial separation zone (ISZ) is first proposed, which is an effective pathway for bubble growth and separation and the pattern of the ISZ exhibits specific regimes with the critical current density. Ultimately, a new approach for better understanding the mechanisms of oxygen transport is revealed.
Collapse
Affiliation(s)
- Ping'an Li
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zihan Zhou
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Diankai Qiu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Linfa Peng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
4
|
He W, Tan X, Guo Y, Xiao Y, Cui H, Wang C. Grain-Boundary-Rich RuO 2 Porous Nanosheet for Efficient and Stable Acidic Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202405798. [PMID: 38659324 DOI: 10.1002/anie.202405798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
RuO2 has been considered as the most likely acidic oxygen evolution reaction (OER) catalyst to replace IrO2, but its performance, especially long-term stability under harsh acidic conditions, is still unacceptable. Here, we propose a grain boundary (GB) engineering strategy by fabricating the ultrathin porous RuO2 nanosheet with abundant of grain boundaries (GB-RuO2) as an efficient acid OER catalyst. The involvement of GB induces significant tensile stress and creates an unsaturated coordination environment, effectively optimizing the adsorption of intermediates and stabilizing active site structure during OER process. Notably, the GB-RuO2 not only exhibits a low overpotential (η10=187 mV) with an ultra-low Tafel slope (34.5 mV dec-1), but also steadily operates for over 550 h in 0.1 M HClO4. Quasi in situ/operando methods confirm that the improved stability is attributed to GB preventing Ru dissolution and greatly inhibiting the lattice oxygen oxidation mechanism (LOM). A proton exchange membrane water electrolysis (PEMWE) using the GB-RuO2 catalyst operates a low voltage of 1.669 V at 2 A cm-2 and operates stably for 100 h at 100 mA cm-2.
Collapse
Affiliation(s)
- Weidong He
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaohong Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingying Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuhang Xiao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Cui
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Liu H, Wang X, Lao K, Wen L, Huang M, Liu J, Hu T, Hu B, Xie S, Li S, Fang X, Zheng N, Tao HB. Optimizing Ionomer Distribution in Anode Catalyst Layer for Stable Proton Exchange Membrane Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402780. [PMID: 38661112 DOI: 10.1002/adma.202402780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The high cost of proton exchange membrane water electrolysis (PEMWE) originates from the usage of precious materials, insufficient efficiency, and lifetime. In this work, an important degradation mechanism of PEMWE caused by dynamics of ionomers over time in anode catalyst layer (ACL), which is a purely mechanical degradation of microstructure, is identified. Contrary to conventional understanding that the microstructure of ACL is static, the micropores are inclined to be occupied by ionomers due to the localized swelling/creep/migration, especially near the ACL/PTL (porous transport layer) interface, where they form transport channels of reactant/product couples. Consequently, the ACL with increased ionomers at PTL/ACL interface exhibit rapid and continuous degradation. In addition, a close correlation between the microstructure of ACL and the catalyst ink is discovered. Specifically, if more ionomers migrate to the top layer of the ink, more ionomers accumulate at the ACL/PEM interface, leaving fewer ionomers at the ACL/PTL interface. Therefore, the ionomer distribution in ACL is successfully optimized, which exhibits reduced ionomers at the ACL/PTL interface and enriches ionomers at the ACL/PEM interface, reducing the decay rate by a factor of three when operated at 2.0 A cm-2 and 80 °C. The findings provide a general way to achieve low-cost hydrogen production.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Xinhui Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Kejie Lao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Linrui Wen
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Meiquan Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Jiawei Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Tian Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Bo Hu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Shunji Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Shuirong Li
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Xiaoliang Fang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
6
|
Galkina I, Faid AY, Jiang W, Scheepers F, Borowski P, Sunde S, Shviro M, Lehnert W, Mechler AK. Stability of Ni-Fe-Layered Double Hydroxide Under Long-Term Operation in AEM Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311047. [PMID: 38269475 DOI: 10.1002/smll.202311047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Anion exchange membrane water electrolysis (AEMWE) is an attractive method for green hydrogen production. It allows the use of non-platinum group metal catalysts and can achieve performance comparable to proton exchange membrane water electrolyzers due to recent technological advances. While current systems already show high performances with available materials, research gaps remain in understanding electrode durability and degradation behavior. In this study, the performance and degradation tracking of a Ni3Fe-LDH-based single-cell is implemented and investigated through the correlation of electrochemical data using chemical and physical characterization methods. A performance stability of 1000 h, with a degradation rate of 84 µV h-1 at 1 A cm-2 is achieved, presenting the Ni3Fe-LDH-based cell as a stable and cost-attractive AEMWE system. The results show that the conductivity of the formed Ni-Fe-phase is one key to obtaining high electrolyzer performance and that, despite Fe leaching, change in anion-conducting binder compound, and morphological changes inside the catalyst bulk, the Ni3Fe-LDH-based single-cells demonstrate high performance and durability. The work reveals the importance of longer stability tests and presents a holistic approach of electrochemical tracking and post-mortem analysis that offers a guideline for investigating electrode degradation behavior over extended measurement periods.
Collapse
Affiliation(s)
- Irina Galkina
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
| | - Alaa Y Faid
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Wulyu Jiang
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
| | - Fabian Scheepers
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
| | | | - Svein Sunde
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Meital Shviro
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, CO, 80401, USA
| | - Werner Lehnert
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
- RWTH Aachen University, Faculty of Mechanical Engineering, Modeling in Electrochemical Process Engineering, 52056, Aachen, Germany
| | - Anna K Mechler
- RWTH Aachen University, Electrochemical Reaction Engineering (AVT.ERT), 52056, Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Fundamentals of Electrochemistry (IEK-9), 52425, Jülich, Germany
- JARA-ENERGY, 52056, Aachen, Germany
| |
Collapse
|
7
|
Liu H, Yang Y, Liu J, Huang M, Lao K, Pan Y, Wang X, Hu T, Wen L, Xu S, Li S, Fang X, Lin WF, Zheng N, Tao HB. Constructing Robust 3D Ionomer Networks in the Catalyst Layer to Achieve Stable Water Electrolysis for Green Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16408-16417. [PMID: 38502312 DOI: 10.1021/acsami.4c03318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The widespread application of proton exchange membrane water electrolyzers (PEMWEs) is hampered by insufficient lifetime caused by degradation of the anode catalyst layer (ACL). Here, an important degradation mechanism has been identified, attributed to poor mechanical stability causing the mass transfer channels to be blocked by ionomers under operating conditions. By using liquid-phase atomic force microscopy, we directly observed that the ionomers were randomly distributed (RD) in the ACL, which occupied the mass transfer channels due to swelling, creeping, and migration properties. Interestingly, we found that alternating treatments of the ACL in different water/temperature environments resulted in forming three-dimensional ionomer networks (3D INs) in the ACL, which increased the mechanical strength of microstructures by 3 times. Benefitting from the efficient and stable mass transfer channels, the lifetime was improved by 19 times. A low degradation rate of approximately 3.0 μV/h at 80 °C and a high current density of 2.0 A/cm2 was achieved on a 50 cm2 electrolyzer. These data demonstrated a forecasted lifetime of 80 000 h, approaching the 2026 DOE lifetime target. This work emphasizes the importance of the mechanical stability of the ACL and offers a general strategy for designing and developing a durable PEMWE.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Jiawei Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Meiquan Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Kejie Lao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yaping Pan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Xinhui Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tian Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Linrui Wen
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Shuwen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Shuirong Li
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Xiaoliang Fang
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Wen-Feng Lin
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, U.K
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
8
|
Tang J, Su C, Shao Z. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers. EXPLORATION (BEIJING, CHINA) 2024; 4:20220112. [PMID: 38854490 PMCID: PMC10867400 DOI: 10.1002/exp.20220112] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 06/11/2024]
Abstract
Researchers have been seeking for the most technically-economical water electrolysis technology for entering the next-stage of industrial amplification for large-scale green hydrogen production. Various membrane-based electrolyzers have been developed to improve electric-efficiency, reduce the use of precious metals, enhance stability, and possibly realize direct seawater electrolysis. While electrode engineering is the key to approaching these goals by bridging the gap between catalysts design and electrolyzers development, nevertheless, as an emerging field, has not yet been systematically analyzed. Herein, this review is organized to comprehensively discuss the recent progresses of electrode engineering that have been made toward advanced membrane-based electrolyzers. For the commercialized or near-commercialized membrane electrolyzer technologies, the electrode material design principles are interpreted and the interface engineering that have been put forward to improve catalytic sites utilization and reduce precious metal loading is summarized. Given the pressing issues of electrolyzer cost reduction and efficiency improvement, the electrode structure engineering toward applying precious metal free electrocatalysts is highlighted and sufficient accessible sites within the thick catalyst layers with rational electrode architectures and effective ions/mass transport interfaces are enabled. In addition, this review also discusses the innovative ways as proposed to break the barriers of current membrane electrolyzers, including the adjustments of electrode reaction environment, and the feasible cell-voltage-breakdown strategies for durable direct seawater electrolysis. Hopefully, this review may provide insightful information of membrane-based electrode engineering and inspire the future development of advanced membrane electrolyzer technologies for cost-effective green hydrogen production.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| | - Chao Su
- School of Energy and PowerJiangsu University of Science and TechnologyZhenjiangChina
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
9
|
Sangtam BT, Park H. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield. MICROMACHINES 2023; 14:2234. [PMID: 38138403 PMCID: PMC10745635 DOI: 10.3390/mi14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.
Collapse
Affiliation(s)
| | - Hanwook Park
- Department of Biomedical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea;
| |
Collapse
|
10
|
Pourrahmani H, Xu C, Van Herle J. The thermodynamic and life-cycle assessments of a novel charging station for electric vehicles in dynamic and steady-state conditions. Sci Rep 2023; 13:11159. [PMID: 37430008 DOI: 10.1038/s41598-023-38387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
The current study performs the thermodynamic and life-cycle assessments (LCA) of a novel charging station in two system designs. The goal is to design an efficient charging station for electric vehicles with high efficiencies and low environmental impacts using Solid Oxide Fuel Cell (SOFC) technology. SOFC is considered a sustainable and environmentally friendly technology to generate electricity compared to combustion engines. To ameliorate the performance, the exhaust heat of the SOFC stacks will be recovered for hydrogen production in an electrolyzer. The system uses four SOFCs to charge the electric vehicles while the output heat is recovered by an Organic Rankine Cycle (ORC) to generate further electricity for hydrogen production in an electrolyzer. In the first design, it is assumed that the SOFC stacks will work full-load during the 24 h of the day, while the second design considers full-load operation for 16 h and part-load (30%) operation for 8 h. The second design of the system analyzes the possibility of integrating a [Formula: see text] lithium-ion battery stores the excessed electricity once the power load is low and acts as a backup in high power demands. Results of the thermodynamic analysis calculated the overall efficiencies of 60.84% and 60.67% for the energy and exergy, respectively, with the corresponding power and hydrogen production of 284.27 kWh and 0.17 g/s. It was observed that higher current density would increase the output of SOFC while reducing the overall energy and exergy efficiencies. In dynamic operation, the use of the batteries can well balance the change of the power loads and improve the dynamic response of the system to the simultaneous changes in the power demand. LCA results also showed that the 284.27kWh system leads to global warming (kg [Formula: see text] eq) of 5.17E+05, 4.47E+05, and 5.17E+05 using Solid Oxide Electrolyzer (SOE), Proton Exchange Membrane Electrolyzer (PEME), and Alkaline Electrolyzer (ALE), respectively. In this regard, the usage of PEME has the lowest impact on the environment in comparison to SOEC, and ALE. A comparison between the environmental impacts of different ORC's working fluids also suggested against the usage of R227ea while R152a showed promising results to be used in the system. The size and weight study also revealed that the battery benefits from the lowest volume and weight in comparison to the other components. Among the considered components in this study, the SOFC unit and the PEME have by far the highest volume.
Collapse
Affiliation(s)
- Hossein Pourrahmani
- Group of Energy Materials, École Polytechnique Fédérale de Lausanne, 1951, Sion, Switzerland.
| | - Chengzhang Xu
- Group of Energy Materials, École Polytechnique Fédérale de Lausanne, 1951, Sion, Switzerland
| | - Jan Van Herle
- Group of Energy Materials, École Polytechnique Fédérale de Lausanne, 1951, Sion, Switzerland
| |
Collapse
|
11
|
Xu J, Jin H, Lu T, Li J, Liu Y, Davey K, Zheng Y, Qiao SZ. IrO x· nH 2O with lattice water-assisted oxygen exchange for high-performance proton exchange membrane water electrolyzers. SCIENCE ADVANCES 2023; 9:eadh1718. [PMID: 37352343 DOI: 10.1126/sciadv.adh1718] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/19/2023] [Indexed: 06/25/2023]
Abstract
The trade-off between activity and stability of oxygen evolution reaction (OER) catalysts in proton exchange membrane water electrolyzer (PEMWE) is challenging. Crystalline IrO2 displays good stability but exhibits poor activity; amorphous IrOx exhibits outstanding activity while sacrificing stability. Here, we combine the advantages of these two materials via a lattice water-incorporated iridium oxide (IrOx·nH2O) that has short-range ordered structure of hollandite-like framework. We confirm that IrOx·nH2O exhibits boosted activity and ultrahigh stability of >5700 hours (~8 months) with a record-high stability number of 1.9 × 107 noxygen nIr-1. We evidence that lattice water is active oxygen species in sustainable and rapid oxygen exchange. The lattice water-assisted modified OER mechanism contributes to improved activity and concurrent stability with no apparent structural degradation, which is different to the conventional adsorbate evolution mechanism and lattice oxygen mechanism. We demonstrate that a high-performance PEMWE with IrOx·nH2O as anode electrocatalyst delivers a cell voltage of 1.77 V at 1 A cm-2 for 600 hours (60°C).
Collapse
Affiliation(s)
- Jun Xu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Sustainability, Energy and Resources, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Teng Lu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2600, Australia
| | - Junsheng Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2600, Australia
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
12
|
Clapp M, Zalitis C, Ryan M. Perspectives on Current and Future Iridium Demand and Iridium Oxide Catalysts for PEM Water Electrolysis. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Kuhnert E, Heidinger M, Sandu D, Hacker V, Bodner M. Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranes. MEMBRANES 2023; 13:348. [PMID: 36984735 PMCID: PMC10053853 DOI: 10.3390/membranes13030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Polymer electrolyte membrane water electrolysis (PEMWE) is a leading candidate for the development of a sustainable hydrogen infrastructure. The heart of a PEMWE cell is represented by the membrane electrode assembly (MEA), which consists of a polymer electrolyte membrane (PEM) with catalyst layers (CLs), flow fields, and bipolar plates (BPPs). The weakest component of the system is the PEM, as it is prone to chemical and mechanical degradation. Membrane chemical degradation is associated with the formation of hydrogen peroxide due to the crossover of product gases (H2 and O2). In this paper, membrane failure due to H2 crossover was addressed in a membrane-focused accelerated stress test (AST). Asymmetric H2O and gas supply were applied to a test cell in OCV mode at two temperatures (60 °C and 80 °C). Electrochemical characterization at the beginning and at the end of testing revealed a 1.6-fold higher increase in the high-frequency resistance (HFR) at 80 °C. The hydrogen crossover was measured with a micro-GC, and the fluoride emission rate (FER) was monitored during the ASTs. A direct correlation between the FER and H2 crossover was identified, and accelerated membrane degradation at higher temperatures was detected.
Collapse
Affiliation(s)
- Eveline Kuhnert
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Mathias Heidinger
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Daniel Sandu
- AiDEXA GmbH, Bergmanngasse 45/10, 8010 Graz, Austria
| | - Viktor Hacker
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Merit Bodner
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| |
Collapse
|
14
|
PGM-Free Electrocatalytic Layer Characterization by Electrochemical Impedance Spectroscopy of an Anion Exchange Membrane Water Electrolyzer with Nafion Ionomer as the Bonding Agent. Catalysts 2023. [DOI: 10.3390/catal13030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Low-cost anion exchange membrane (AEM) water electrolysis is a promising technology for producing “green” high-purity hydrogen using platinum group metal (PGM)-free catalysts. The performance of AEM electrolysis depends on the overall overvoltage, e.g., voltage losses coming from different processes in the water electrolyzer including hydrogen and oxygen evolution, non-faradaic charge transfer resistance, mass transfer limitations, and others. Due to the different relaxation times of these processes, it is possible to unravel them in the frequency domain by electrochemical impedance spectroscopy. This study relates to solving and quantifying contributions to the total polarization resistance of the AEM water electrolyzer, including ohmic and charge transfer resistances in the kinetically controlled mode. The high-frequency contribution is proposed to have non-faradaic nature, and its conceivable nature and mechanism are discussed. The characteristic frequencies of unraveled contributions are provided to be used as benchmark data for commercially available membranes and electrodes.
Collapse
|
15
|
Edgington J, Seitz LC. Advancing the Rigor and Reproducibility of Electrocatalyst Stability Benchmarking and Intrinsic Material Degradation Analysis for Water Oxidation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jane Edgington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Linsey C. Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
16
|
Retuerto M, Pascual L, Torrero J, Salam MA, Tolosana-Moranchel Á, Gianolio D, Ferrer P, Kayser P, Wilke V, Stiber S, Celorrio V, Mokthar M, Sanchez DG, Gago AS, Friedrich KA, Peña MA, Alonso JA, Rojas S. Highly active and stable OER electrocatalysts derived from Sr 2MIrO 6 for proton exchange membrane water electrolyzers. Nat Commun 2022; 13:7935. [PMID: 36566246 PMCID: PMC9789951 DOI: 10.1038/s41467-022-35631-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Proton exchange membrane water electrolysis is a promising technology to produce green hydrogen from renewables, as it can efficiently achieve high current densities. Lowering iridium amount in oxygen evolution reaction electrocatalysts is critical for achieving cost-effective production of green hydrogen. In this work, we develop catalysts from Ir double perovskites. Sr2CaIrO6 achieves 10 mA cm-2 at only 1.48 V. The surface of the perovskite reconstructs when immersed in an acidic electrolyte and during the first catalytic cycles, resulting in a stable surface conformed by short-range order edge-sharing IrO6 octahedra arranged in an open structure responsible for the high performance. A proton exchange membrane water electrolysis cell is developed with Sr2CaIrO6 as anode and low Ir loading (0.4 mgIr cm-2). The cell achieves 2.40 V at 6 A cm-2 (overload) and no loss in performance at a constant 2 A cm-2 (nominal load). Thus, reducing Ir use without compromising efficiency and lifetime.
Collapse
Affiliation(s)
- María Retuerto
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| | - Laura Pascual
- Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Jorge Torrero
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Álvaro Tolosana-Moranchel
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Paula Kayser
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Vincent Wilke
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Svenja Stiber
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Verónica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mohamed Mokthar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Daniel García Sanchez
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Aldo Saul Gago
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Kaspar Andreas Friedrich
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Miguel Antonio Peña
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - José Antonio Alonso
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Sergio Rojas
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
17
|
Devadas B, Prokop M, Duraisamy S, Bouzek K. Poly(amidoamine) dendrimer-protected Pt nanoparticles as a catalyst with ultra-low Pt loading for PEM water electrolysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Sun C, Qin J, Li M, Han G, Song Y. Ultrafine IrRu Nanoparticles toward Efficient Oxygen Evolution Reaction in Acidic Media. Inorg Chem 2022; 61:17362-17369. [PMID: 36264684 DOI: 10.1021/acs.inorgchem.2c03101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are capable of mass-producing green hydrogen with renewable and wave-trough electricity, but confront the challenge of the lack of advanced electrocatalysts to accelerate sluggish oxygen evolution reaction (OER). Herein, we report the synthesis of ultrafine IrRu alloy nanoparticles (1.6 ± 0.3 nm) by coprecipitation of IrCl3, RuCl3, and HCOONa in water to allow Ir3+ and Ru3+ to be well dispersed and enclosed in the matrix of crystalline HCOONa, followed by heat treatment of HCOONa to reduce Ir3+ and Ru3+. Remarkably, the overpotential of IrRu toward acidic OER at 10 mA cm-2 is merely 230 and 194 mV at 51 and 204 μgIrRu cm-2, respectively. The high electrochemically active surface area (ECSA) of 577.1 m2 g-1 and high specific activity (SA) of 22.7 μA cm-2 at 1.45 V vs RHE would contribute to the exceptional OER activity. In addition, the electron transfer from Ir to Ru in IrRu should significantly boost the OER activity according to X-ray photoelectron spectroscopy (XPS). IrRu also shows an excellent stability during 10 h of a chronopotentiometry (CP) test at 10 mA cm-2. Eventually, the high OER activity of IrRu was verified in a PEMWE.
Collapse
Affiliation(s)
- Chongyun Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian116024, People's Republic of China
| | - Jiaqi Qin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian116024, People's Republic of China
| | - Mengyao Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian116024, People's Republic of China
| | - Guangqi Han
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian116024, People's Republic of China
| | - Yujiang Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian116024, People's Republic of China
| |
Collapse
|
19
|
Liu H, Tao HB, Liu B. Kinetic Insights of Proton Exchange Membrane Water Electrolyzer Obtained by Operando Characterization Methods. J Phys Chem Lett 2022; 13:6520-6531. [PMID: 35822838 DOI: 10.1021/acs.jpclett.2c01341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Benefiting from the merits of short response time, high current density, and differential pressure, the proton exchange membrane water electrolyzer (PEMWE) is attracting increasing attention from both academic and industry researchers. A limiting factor that impedes the widespread application of the PEMWE is its reliance on the rarest elements, such as iridium and platinum. In order to optimize the device performance as well as to reduce the usage of rare elements, it is important but difficult to directly observe the reaction within the electrolyzer under working conditions. Thus, operando characterization methods are urgently needed to probe in real time the water electrolysis process during operation. In this perspective, we highlight the important role and summarize the recent advances of operando characterization methods in obtaining kinetic insights about PEMWEs. Based on the demands of kinetic optimization, an outlook of future characterization methods is given at the end.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
20
|
Ali MF, Lee HI, Bernäcker CI, Weißgärber T, Lee S, Kim SK, Cho WC. Zirconia Toughened Alumina-Based Separator Membrane for Advanced Alkaline Water Electrolyzer. Polymers (Basel) 2022; 14:1173. [PMID: 35335503 PMCID: PMC8951763 DOI: 10.3390/polym14061173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is nowadays considered a favorable and attractive energy carrier fuel to replace other fuels that cause global warming problems. Water electrolysis has attracted the attention of researchers to produce green hydrogen mainly for the accumulation of renewable energy. Hydrogen can be safely used as a bridge to successfully connect the energy demand and supply divisions. An alkaline water electrolysis system owing to its low cost can efficiently use renewable energy sources on large scale. Normally organic/inorganic composite porous separator membranes have been employed as a membrane for alkaline water electrolyzers. However, the separator membranes exhibit high ionic resistance and low gas resistance values, resulting in lower efficiency and raised safety issues as well. Here, in this study, we report that zirconia toughened alumina (ZTA)-based separator membrane exhibits less ohmic resistance 0.15 Ω·cm2 and low hydrogen gas permeability 10.7 × 10-12 mol cm-1 s-1 bar-1 in 30 wt.% KOH solution, which outperforms the commercial, state-of-the-art Zirfon® PERL separator. The cell containing ZTA and advanced catalysts exhibit an excellent performance of 2.1 V at 2000 mA/cm2 at 30 wt.% KOH and 80 °C, which is comparable with PEM electrolysis. These improved results show that AWEs equipped with ZTA separators could be superior in performance to PEM electrolysis.
Collapse
Affiliation(s)
- Muhammad Farjad Ali
- Department of Advanced Energy and System Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea;
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea; (H.I.L.); (S.L.); (S.-K.K.)
| | - Hae In Lee
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea; (H.I.L.); (S.L.); (S.-K.K.)
| | - Christian Immanuel Bernäcker
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden, Germany; (C.I.B.); (T.W.)
| | - Thomas Weißgärber
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden, Germany; (C.I.B.); (T.W.)
| | - Sechan Lee
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea; (H.I.L.); (S.L.); (S.-K.K.)
| | - Sang-Kyung Kim
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea; (H.I.L.); (S.L.); (S.-K.K.)
| | - Won-Chul Cho
- Department of Future Energy Convergence, Seoul National University of Science & Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
21
|
High performance and cost-effective supported IrOx catalyst for proton exchange membrane water electrolysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Li N, Araya SS, Kær SK. Investigating low and high load cycling tests as accelerated stress tests for proton exchange membrane water electrolysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Bahr M, Gusak A, Stypka S, Oberschachtsiek B. Artificial Neural Networks for Aging Simulation of Electrolysis Stacks. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthias Bahr
- Zentrum für BrennstoffzellenTechnik GmbH Carl-Benz-Straße 201 47057 Duisburg Germany
| | - Andreas Gusak
- Zentrum für BrennstoffzellenTechnik GmbH Carl-Benz-Straße 201 47057 Duisburg Germany
| | - Sebastian Stypka
- Zentrum für BrennstoffzellenTechnik GmbH Carl-Benz-Straße 201 47057 Duisburg Germany
| | - Bernd Oberschachtsiek
- Zentrum für BrennstoffzellenTechnik GmbH Carl-Benz-Straße 201 47057 Duisburg Germany
| |
Collapse
|
24
|
Shi Y, Jiang KX, Zhang TA, Guo JH, Zhao AC. Clean production of porous-Al(OH) 3 from fly ash. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122371. [PMID: 32151930 DOI: 10.1016/j.jhazmat.2020.122371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Fly ash is one of the largest solid waste and causes serious environment problems. Extraction of Al(OH)3 from fly ash is beneficial to environment and economy. We developed a clean electrolysis method to generate hydroxyl groups in situ to extract Al(OH)3 from fly ash leachate without adding chemicals or using expensive membranes, avoiding the introduction of new impurities, secondary pollutants generation, and membrane limitations. Batch experiments yielded porous electrolytic products with BET surface areas from 11.7610 to 25.5267 m2/g, pore volumes from 0.1935 to 0.1643 cm3/g and pore sizes from 65.7960 to 25.7434 nm. The composition of the electrolytic products was 86.43 wt% Al(OH)3, 9.00 wt% SO3, 1.67 wt% Fe(OH)3, and 0.29 wt% Ca(OH)2. The current efficiency was 90.51 % under optimized conditions of c (Al3+) = 0.1 M, t =2 h, and J = 750 A/m2. Mean particle size was from 24.1-98.1 μm. Impurities mainly affected the composition of the electrolytic products. The OH- generated by H2O reduction reacted with Al3+, Fe3+, and Ca2+ to generate a hydroxide. Fe3+ preceded Ca2+ into the hydroxide. H2 released continuously from H2O reduction, resulting in a porous hydroxide. The wastewater was reused as a leaching reagent to promote zero-pollution discharge.
Collapse
Affiliation(s)
- Yuan Shi
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, Special Metallurgy and Process Engineering Institute, School of Metallurgy, Northeastern University, Shenyang, 110819, PR China
| | - Kai-Xi Jiang
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, Special Metallurgy and Process Engineering Institute, School of Metallurgy, Northeastern University, Shenyang, 110819, PR China; College of Zijin Mining, Fuzhou University, Fuzhou, 350000, PR China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100000, PR China
| | - Ting-An Zhang
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, Special Metallurgy and Process Engineering Institute, School of Metallurgy, Northeastern University, Shenyang, 110819, PR China.
| | - Jun-Hua Guo
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, Special Metallurgy and Process Engineering Institute, School of Metallurgy, Northeastern University, Shenyang, 110819, PR China
| | - Ai-Chun Zhao
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, PR China
| |
Collapse
|
25
|
Performance improvement of proton exchange membrane electrolyzer cells by introducing in-plane transport enhancement layers. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.096] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Chemically stabilised extruded and recast short side chain Aquivion® proton exchange membranes for high current density operation in water electrolysis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis. MATERIALS 2018; 11:ma11081368. [PMID: 30087229 PMCID: PMC6119855 DOI: 10.3390/ma11081368] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
Membrane–electrode assemblies (MEAs) designed for a polymer electrolyte membrane (PEM) water electrolyser based on a short-side chain (SSC) perfluorosulfonic acid (PFSA) membrane, Aquivion®, and an advanced Ir-Ru oxide anode electro-catalyst, with various cathode and anode noble metal loadings, were investigated. Electrochemical impedance spectroscopy (EIS), in combination with performance and durability tests, provided useful information to identify rate-determining steps and to quantify the impact of the different phenomena on the electrolysis efficiency and stability characteristics as a function of the MEA properties. This technique appears to be a useful diagnostic tool to individuate different phenomena and to quantify their effect on the performance and degradation of PEM electrolysis cells.
Collapse
|
28
|
Saveleva VA, Wang L, Teschner D, Jones T, Gago AS, Friedrich KA, Zafeiratos S, Schlögl R, Savinova ER. Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides. J Phys Chem Lett 2018; 9:3154-3160. [PMID: 29775319 DOI: 10.1021/acs.jpclett.8b00810] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Progress in the development of proton exchange membrane (PEM) water electrolysis technology requires decreasing the anode overpotential, where the sluggish multistep oxygen evolution reaction (OER) occurs. This calls for an understanding of the nature of the active OER sites and reaction intermediates, which are still being debated. In this work, we apply synchrotron radiation-based near-ambient pressure X-ray photoelectron and absorption spectroscopies under operando conditions in order to unveil the nature of the reaction intermediates and shed light on the OER mechanism on electrocatalysts most widely used in PEM electrolyzers-electrochemical and thermal iridium oxides. Analysis of the O K-edge and Ir 4f spectra backed by density functional calculations reveals a universal oxygen anion red-ox mechanism regardless of the nature (electrochemical or thermal) of the iridium oxide. The formation of molecular oxygen is considered to occur through a chemical step from the electrophilic OI- species, which itself is formed in an electrochemical step.
Collapse
Affiliation(s)
- Viktoriia A Saveleva
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé , UMR 7515 du CNRS-UdS 25 Rue Becquerel , 67087 Strasbourg , France
| | - Li Wang
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR) , Pfaffenwaldring 38-40 , 70569 Stuttgart , Germany
| | - Detre Teschner
- Departement of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
- Department of Heterogeneous Reactions , Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim a. d. Ruhr , Germany
| | - Travis Jones
- Departement of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Aldo S Gago
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR) , Pfaffenwaldring 38-40 , 70569 Stuttgart , Germany
| | - K Andreas Friedrich
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR) , Pfaffenwaldring 38-40 , 70569 Stuttgart , Germany
- Institute of Energy Storage , University of Stuttgart , Pfaffenwaldring 31 , 70569 Stuttgart , Germany
| | - Spyridon Zafeiratos
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé , UMR 7515 du CNRS-UdS 25 Rue Becquerel , 67087 Strasbourg , France
| | - Robert Schlögl
- Departement of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
- Department of Heterogeneous Reactions , Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim a. d. Ruhr , Germany
| | - Elena R Savinova
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé , UMR 7515 du CNRS-UdS 25 Rue Becquerel , 67087 Strasbourg , France
| |
Collapse
|
29
|
Lettenmeier P, Majchel J, Wang L, Saveleva VA, Zafeiratos S, Savinova ER, Gallet JJ, Bournel F, Gago AS, Friedrich KA. Highly active nano-sized iridium catalysts: synthesis and operando spectroscopy in a proton exchange membrane electrolyzer. Chem Sci 2018; 9:3570-3579. [PMID: 29780489 PMCID: PMC5934821 DOI: 10.1039/c8sc00555a] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022] Open
Abstract
A stable and cost effective oxygen evolution reaction (OER) catalyst is crucial for the large-scale market penetration of proton exchange membrane (PEM) water electrolyzers. We show that the synthesis of iridium nanoparticles in either low purity ethanol or water, or in the absence of a surfactant, is detrimental to the electrocatalytic properties of the materials. Adding NaBH4 in excess improves the purity of the catalyst enhancing the OER activity up to 100 A gIr-1 at 1.51 V vs. RHE, the highest value reported so far for high purity Ir nanoparticles. The measured OER activity correlates with the capacitive current rather than with the charge corresponding to the IrIII/IrIV oxidation peak. Operando near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) on membrane electrode assemblies (MEAs) with the synthesized catalysts reveals a metallic core surrounded by a thin layer of IrIII/IV oxides/hydroxides. Oxidation of IrIII leaves behind a porous ultrathin layer of IrIV oxides/hydroxides, which dominate the surface during the OER, while IrV was not detected.
Collapse
Affiliation(s)
- P Lettenmeier
- Institute of Engineering Thermodynamics , German Aerospace Center (DLR) , Pfaffenwaldring 38-40 , Stuttgart , 70569 , Germany .
| | - J Majchel
- Institute of Engineering Thermodynamics , German Aerospace Center (DLR) , Pfaffenwaldring 38-40 , Stuttgart , 70569 , Germany .
| | - L Wang
- Institute of Engineering Thermodynamics , German Aerospace Center (DLR) , Pfaffenwaldring 38-40 , Stuttgart , 70569 , Germany .
| | - V A Saveleva
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé , UMR 7515 , du CNRS-Université de Strasbourg , 25 Rue Becquerel , 67087 Strasbourg , France
| | - S Zafeiratos
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé , UMR 7515 , du CNRS-Université de Strasbourg , 25 Rue Becquerel , 67087 Strasbourg , France
| | - E R Savinova
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé , UMR 7515 , du CNRS-Université de Strasbourg , 25 Rue Becquerel , 67087 Strasbourg , France
| | - J-J Gallet
- Laboratoire de Chimie Physique-Matière et Rayonnement , Sorbonne Université , UPMC Univ Paris 06 , CNRS , 4 place Jussieu , 75005 Paris , France
- Synchrotron-Soleil , L'orme des Merisiers , Saint Aubin , BP48 91192 Gif-sur-Yvette Cedex , France
| | - F Bournel
- Laboratoire de Chimie Physique-Matière et Rayonnement , Sorbonne Université , UPMC Univ Paris 06 , CNRS , 4 place Jussieu , 75005 Paris , France
- Synchrotron-Soleil , L'orme des Merisiers , Saint Aubin , BP48 91192 Gif-sur-Yvette Cedex , France
| | - A S Gago
- Institute of Engineering Thermodynamics , German Aerospace Center (DLR) , Pfaffenwaldring 38-40 , Stuttgart , 70569 , Germany .
| | - K A Friedrich
- Institute of Engineering Thermodynamics , German Aerospace Center (DLR) , Pfaffenwaldring 38-40 , Stuttgart , 70569 , Germany .
- Institute of Energy Storage , University of Stuttgart , Keplerstraße 7 , Stuttgart 70174 , Germany
| |
Collapse
|
30
|
Spöri C, Kwan JTH, Bonakdarpour A, Wilkinson DP, Strasser P. Stabilitätsanforderungen von Elektrokatalysatoren für die Sauerstoffentwicklung: der Weg zu einem grundlegenden Verständnis und zur Minimierung der Katalysatordegradation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608601] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Camillo Spöri
- The Electrochemical Energy, Catalysis and Materials, Science Laboratory, Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Jason Tai Hong Kwan
- Department of Chemical and Biological Engineering; University of British Columbia; 2360 East Mall Vancouver B.C V6T 1Z3 Kanada
| | - Arman Bonakdarpour
- Department of Chemical and Biological Engineering; University of British Columbia; 2360 East Mall Vancouver B.C V6T 1Z3 Kanada
| | - David P. Wilkinson
- Department of Chemical and Biological Engineering; University of British Columbia; 2360 East Mall Vancouver B.C V6T 1Z3 Kanada
| | - Peter Strasser
- The Electrochemical Energy, Catalysis and Materials, Science Laboratory, Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 124 10623 Berlin Deutschland
- Ertl Center for Electrochemistry and Catalysis; Gwangju Institute of Science and Technology; Gwangju 500-712 Südkorea
| |
Collapse
|
31
|
Spöri C, Kwan JTH, Bonakdarpour A, Wilkinson DP, Strasser P. The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. Angew Chem Int Ed Engl 2017; 56:5994-6021. [PMID: 27805788 DOI: 10.1002/anie.201608601] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 11/09/2022]
Abstract
This Review addresses the technical challenges, scientific basis, recent progress, and outlook with respect to the stability and degradation of catalysts for the oxygen evolution reaction (OER) operating at electrolyzer anodes in acidic environments with an emphasis on ion exchange membrane applications. First, the term "catalyst stability" is clarified, as well as current performance targets, major catalyst degradation mechanisms, and their mitigation strategies. Suitable in situ experimental methods are then evaluated to give insight into catalyst degradation and possible pathways to tune OER catalyst stability. Finally, the importance of identifying universal figures of merit for stability is highlighted, leading to a comprehensive accelerated lifetime test that could yield comparable performance data across different laboratories and catalyst types. The aim of this Review is to help disseminate and stress the important relationships between structure, composition, and stability of OER catalysts under different operating conditions.
Collapse
Affiliation(s)
- Camillo Spöri
- The Electrochemical Energy, Catalysis and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Jason Tai Hong Kwan
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C, V6T 1Z3, Canada
| | - Arman Bonakdarpour
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C, V6T 1Z3, Canada
| | - David P Wilkinson
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C, V6T 1Z3, Canada
| | - Peter Strasser
- The Electrochemical Energy, Catalysis and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany.,Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea
| |
Collapse
|
32
|
Lettenmeier P, Wang R, Abouatallah R, Saruhan B, Freitag O, Gazdzicki P, Morawietz T, Hiesgen R, Gago AS, Friedrich KA. Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers. Sci Rep 2017; 7:44035. [PMID: 28294119 PMCID: PMC5353588 DOI: 10.1038/srep44035] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/31/2017] [Indexed: 11/10/2022] Open
Abstract
Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS), respectively. The physical properties of the coatings are thoroughly characterized by scanning electron, atomic force microscopies (SEM, AFM); and X-ray diffraction, photoelectron spectroscopies (XRD, XPS). The Ti coating (50 μm) protects the stainless steel substrate against corrosion, while a 50-fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000 h of operation under nominal conditions, showing a potential use in PEM electrolyzers for large-scale H2 production from renewables.
Collapse
Affiliation(s)
- P Lettenmeier
- Institute of Engineering Thermodynamics, German Aerospace Center, Pfaffenwaldring 38-40, Stuttgart, 70569, Germany
| | - R Wang
- Hydrogenics Corporation, 220 Admiral Boulevard, Mississauga, ON L5T 2N6, Canada
| | - R Abouatallah
- Hydrogenics Corporation, 220 Admiral Boulevard, Mississauga, ON L5T 2N6, Canada
| | - B Saruhan
- Institute of Materials Research, German Aerospace Center, Linder Hoehe, 51147, Cologne, Germany
| | - O Freitag
- Institute of Materials Research, German Aerospace Center, Linder Hoehe, 51147, Cologne, Germany
| | - P Gazdzicki
- Institute of Engineering Thermodynamics, German Aerospace Center, Pfaffenwaldring 38-40, Stuttgart, 70569, Germany
| | - T Morawietz
- University of Applied Sciences Esslingen, Dept. of Basic Science, Kanalstrasse 33, 73728, Esslingen, Germany
| | - R Hiesgen
- University of Applied Sciences Esslingen, Dept. of Basic Science, Kanalstrasse 33, 73728, Esslingen, Germany
| | - A S Gago
- Institute of Engineering Thermodynamics, German Aerospace Center, Pfaffenwaldring 38-40, Stuttgart, 70569, Germany
| | - K A Friedrich
- Institute of Engineering Thermodynamics, German Aerospace Center, Pfaffenwaldring 38-40, Stuttgart, 70569, Germany.,Institute of Energy Storage, University of Stuttgart, Stuttgart, 70550, Germany
| |
Collapse
|