1
|
Wang Z, Zhang W, Wang W, Wang P, Ni L, Wang S, Ma J, Cheng W. Amine-Modified ZIF Composite Membranes: Regulated Nanochannel Interactions for Enhanced Cation Transport and Precise Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4199-4209. [PMID: 39976453 DOI: 10.1021/acs.est.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Electromembrane water treatment technologies are attracting attention for their energy efficiency and precise separation of counterions. However, ion-exchange membranes exhibit low ionic conductance and selectivity for ions with similar charges. In this study, we developed a novel ZIF-8 composite membrane with amine-modified nanochannels through an in situ PEI-assisted seeding and secondary growth method. An integral and uniform selective layer was formed, and the amine-modified nanochannels induced differential transport of Li+, Na+, K+, and Mg2+ via the dehydration-hydration process. The composite membrane possessed a lower energy barrier for Na+ transport (Ea = 13 kJ mol-1) compared to Mg2+ (Ea = 17 kJ mol-1), showing a Na+ flux of 3.7 × 10-8 mol·cm-2·s-1 and a Na+/Mg2+ permselectivity of 52 (∼60 times higher than the commercial membrane). The physicochemical and electrochemical properties of the composite membranes were systematically characterized, revealing the significant role of the Mg2+ layer in increasing Mg2+ repulsion and facilitating Na+ diffusion. Besides, DFT simulation and interaction energy calculation elucidated that a moderate binding energy and compensation effect between ions and nanochannels, which can be precisely regulated by PEI incorporation, are crucial for the favorable passage of Na+ while maintaining high Mg2+ rejection. The membrane also demonstrated performance stability during a 5-day test and maintained high selectivity across varying salinity and pH conditions. This work advances the development of efficient cation separation membranes for sustainable desalination and resource recovery.
Collapse
Affiliation(s)
- Zhe Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Weifu Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Lei Ni
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
| | - Shaopo Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| |
Collapse
|
2
|
Mani AM, Kumar A, Chaudhury S. Decoding transport selectivity of ions in polymer membranes by In-situ impedance spectroscopy. SEP SCI TECHNOL 2023:1-11. [DOI: 10.1080/01496395.2023.2219377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 07/19/2023]
Affiliation(s)
- Agnes Maria Mani
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashwani Kumar
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Sanhita Chaudhury
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
3
|
Niu Z, Liu Y, Li X, Yan K, Chen H. Electrochemical sensor for ultrasensitive detection of paraquat based on metal-organic frameworks and para-sulfonatocalix[4]arene-AuNPs composite. CHEMOSPHERE 2022; 307:135570. [PMID: 35803381 DOI: 10.1016/j.chemosphere.2022.135570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The widespread occurrence of pesticides in surface water, groundwater, soil, and food has received increasing attention towards environmental safety. Paraquat (PQ) is world widely used as a rapid sterilant herbicide and is highly toxic to humans. A simple, rapid, sensitive, and on-site detection method for the water environment to detection of PQ is urgently required. Here, we prepared a zeolite imidazole skeleton-8 (ZIF-8) and para-sulfonylcalix[4]arene (pSC4) coated gold nanoparticles composite (pSC4-AuNPs@ZIF-8) by one-step method. An electrochemical biosensor assay for PQ was established based on pSC4-AuNPs@ZIF-8 modified glassy carbon electrode through host-guest recognition of PQ and pSC4. Under the optimal conditions, recoveries of targets determination results were 92.7%-103% (n = 3), respectively. The quantity PQ detection limit was found to be 0.49 pM. Therefore, the signal amplification strategy based on pSC4-AuNPs@ZIF-8 has potential value in detecting trace pollutants in the water environment.
Collapse
Affiliation(s)
- Zhijuan Niu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
4
|
Zhang B, Bai J, Zhang Y, Zhou C, Wang P, Zha L, Li J, Simchi A, Zhou B. High Yield of CO and Synchronous S Recovery from the Conversion of CO 2 and H 2S in Natural Gas Based on a Novel Electrochemical Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14854-14862. [PMID: 34634907 DOI: 10.1021/acs.est.1c04414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
H2S and CO2 are the main impurities in raw natural gas, which needs to be purified before use. However, the comprehensive utilization of H2S and CO2 has been ignored. Herein, we proposed a fully resource-based method to convert toxic gas H2S and greenhouse gas CO2 synchronously into CO and elemental S by using a novel electrochemical reactor. The special designs include that, in the anodic chamber, H2S was oxidized rapidly to S based on the I-/I3- cyclic redox system to avoid anode passivation. On the other hand, in the cathodic chamber, CO2 was rapidly and selectively reduced to CO based on a porous carbon gas diffusion electrode (GDE) modified with polytetrafluoroethylene and cobalt phthalocyanine (CoPc). A high Faraday efficiency (>95%) toward CO was achieved due to the enhanced mass transfer of CO2 on the GDE and the presence of the selective CoPc catalyst. The maximum energy efficiency of the system was more than 72.41% with a current density of over 50 mA/cm2, which was 12.5 times higher than what was previously reported on the H2S treatment system. The yields of S and CO were 24.94 mg·cm-2·h-1 and 19.93 mL·cm-2·h-1, respectively. A model analysis determined that the operation cost of the synchronous utilization of H2S and CO2 method was slightly lower than that of the single utilization of H2S in the existing natural gas purification technology. Overall, this paper provides efficient and simultaneous conversion of H2S and CO2 into S and CO.
Collapse
Affiliation(s)
- Bo Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pengbo Wang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lina Zha
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588 89694, Iran
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
5
|
Studies on Anion Exchange Membrane and Interface Properties by Electrochemical Impedance Spectroscopy: The Role of pH. MEMBRANES 2021; 11:membranes11100771. [PMID: 34677537 PMCID: PMC8540937 DOI: 10.3390/membranes11100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022]
Abstract
Ion-exchange membranes (IEMs) represent a key component in various electrochemical energy conversion and storage systems. In this study, electrochemical impedance spectroscopy (EIS) was used to investigate the effects of structural changes of anion exchange membranes (AEMs) on the bulk membrane and interface properties as a function of solution pH. The variations in the physico/electrochemical properties, including ion exchange capacity, swelling degree, fixed charge density, zeta potentials as well as membrane and interface resistances of two commercial AEMs and cation exchange membranes (CEMs, as a control) were systematically investigated in different pH environments. Structural changes of the membrane surface were analyzed by Fourier transform infrared and X-ray photoelectron spectroscopy. Most notably, at high pH (pH > 10), the membrane (Rm) and the diffusion boundary layer resistances (Rdbl) increased for the two AEMs, whereas the electrical double layer resistance decreased simultaneously. This increase in Rm and Rdbl was mainly attributed to the deprotonation of the tertiary amino groups (-NR2H+) as a membrane functionality. Our results show that the local pH at the membrane-solution interface plays a crucial role on membrane electrochemical properties in IEM transport processes, particularly for AEMs.
Collapse
|
6
|
Impedance model for voltage optimization of parabens extraction in an electromembrane millifluidic device. J Chromatogr A 2020; 1625:461270. [DOI: 10.1016/j.chroma.2020.461270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/10/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
|
7
|
Maxwell-Stefan modeling and experimental study on the ionic resistance of cation-selective membranes in concentrated lye solutions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Wang P, Wang F, Jiang H, Zhang Y, Zhao M, Xiong R, Ma J. Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. WATER RESEARCH 2020; 175:115649. [PMID: 32200335 DOI: 10.1016/j.watres.2020.115649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Increasing attention has been focused on the removal of micropollutants from contaminated drinking source water. However, low rejection efficiency and membrane fouling still inhibit further application of nanofiltration membrane in this field. Interesting results were found that the residual hydrolyzed-aluminum nanoparticles from supernatant after coagulation and sedimentation strongly improved the nanofiltration performance for micropollutant removal. A simulated raw water containing humic acids, micropollutants and kaolinite clay was employed to investigate the factors of water matrix affecting the nanoparticle-enhanced nanofiltration for micropollutant removal. Results of experiments showed that these hydrolyzed-aluminum nanoparticles easily induced the aggregation of bisphenol-A (BPA) and humic acids in the supernatant. The enhancement of BPA removal was mainly attributed to the repelling interaction between the Al-BPA-DOC complexity and in situ-modified membrane surface during nanofiltration. 'This in situ surface modification by the hydrolyzed-aluminum nanoparticles improved membrane hydrophilicity, roughness and positively-charging capacity. For the treatment of River Songhua water spiked with micropollutant, the percentage removal of BPA was improved to be 88.5%, much more than the case of single nanofiltration without coagulation (60.7%). Meanwhile, the membrane fouling was reduced by 2.13 times than the case of single nanofiltration without the dynamically deposited-layer of nanoparticles. This in situ modification of nanofiltration membrane by hydrolyzed-aluminum nanoparticles achieved excellent removal efficiency for micropollutants from River Songhua water background.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Feihong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Haicheng Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuchao Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ming Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ruohan Xiong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Zhang L, Jia H, Wang J, Wen H, Li J. Characterization of fouling and concentration polarization in ion exchange membrane by in-situ electrochemical impedance spectroscopy. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117443] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
CHAROEN-AMORNKITT P, SUZUKI T, TSUSHIMA S. Determination of Constant Phase Element Parameters under Cyclic Voltammetry Conditions Using a Semi-theoretical Equation. ELECTROCHEMISTRY 2019. [DOI: 10.5796/electrochemistry.18-00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Takahiro SUZUKI
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka University
| | - Shohji TSUSHIMA
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka University
| |
Collapse
|
11
|
Paltrinieri L, Poltorak L, Chu L, Puts T, van Baak W, Sudhölter EJ, de Smet LC. Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
López-Cázares MI, Pérez-Rodríguez F, Rangel-Méndez JR, Centeno-Sánchez M, Cházaro-Ruiz LF. Improved conductivity and anti(bio)fouling of cation exchange membranes by AgNPs-GO nanocomposites. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Kamcev J, Sujanani R, Jang ES, Yan N, Moe N, Paul DR, Freeman BD. Salt concentration dependence of ionic conductivity in ion exchange membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
|