1
|
Sarfaraz Khabbaz M, Biabanialitappeh S, Wei X. Electrocatalysts and Membranes for Aqueous Polysulfide Redox Flow Batteries. ACS NANO 2025; 19:20321-20356. [PMID: 40421868 DOI: 10.1021/acsnano.5c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Redox flow batteries have demonstrated attractive attributes in large-scale stationary energy storage, but practical applications are impeded by high capital cost. Polysulfides are exceedingly cost-effective candidates of redox-active materials for achieving cost reduction, and a recent revival has been witnessed. But the slow conversion kinetics and irreversible crossover loss of polysulfides are daunting challenges that have caused severe technoeconomic stress and even system failure. Solutions to these issues capitalize on the innovations of powerful electrocatalysts and permselective membranes. To inspire viable development strategies and further advance polysulfide redox, this Review presents a critical overview of the state of the art of electrocatalysts and membranes, highlighting their working mechanisms, design protocols, and performance metrics. We briefly describe the complicated processes of the polysulfide reaction and the major spectroscopic methods for polysulfide speciation. Next, we point out the specific characteristics of polysulfide redox and summarize the metallic, metal sulfide, and molecular electrocatalysts to elucidate the fundamental requirements for imparting strong catalytic effects. We then discuss the possible origins of polysulfide crossover and outline the major families of membrane chemistries targeting polysulfide retention. Finally, the remaining challenges and the future perspectives for potential considerations are provided, aiming to realize efficient, durable polysulfide flow batteries.
Collapse
Affiliation(s)
- Mahla Sarfaraz Khabbaz
- School of Mechanical Engineering, Purdue University, 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| | - Sepideh Biabanialitappeh
- School of Mechanical Engineering, Purdue University, 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| | - Xiaoliang Wei
- School of Mechanical Engineering, Purdue University, 723 West Michigan Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
2
|
de Aguiar Pedott V, Della Rocca DG, Weschenfelder SE, Mazur LP, Gomez Gonzalez SY, Andrade CJD, Moreira RFPM. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122638. [PMID: 39342833 DOI: 10.1016/j.jenvman.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds. The application of EO treatment for OPW is still in an initial stage, due to the intricate nature of this matrix and scattered information about it. This study provides a technological overview of EO technology for OPW treatment, from laboratory scale to the development of large-scale prototypes, identifying design and process parameters that can potentially permit high efficiency, applicability, and commercial deployment. Research in this domain has demonstrated notable rates of removal of recalcitrant pollutants (>90%), utilizing active and non-active electrodes. Electro-generated active species, primarily from chloride, play a pivotal role in the oxidation of organic compounds. However, the highly saline conditions in OPW hinder the complete mineralization of these organics, which can be improved by using non-active anodes and lower salinity levels. The performance of electrodes greatly influences the efficiency and effectiveness of OPW treatment. Various factors must be considered when selecting the electrode material, such as its conductivity, stability, surface area, corrosion resistance, and cost. Additionally, the specific contaminants present in the OPW, and their electrochemical reactivity must be considered to ensure optimal treatment outcomes. Balancing these considerations can be challenging, but it is crucial for achieving successful OPW treatment. Active electrode materials exhibit a high affinity for chloride molecules, generating more active species than non-active materials, which exhibit more significant degradation potential due to the production of hydroxyl radicals. Regarding scale-up, key challenges include low current efficiency, the formation of by-products, electrode deactivation, and limitations in mass transfer. To address these issues, enhanced mass transfer rates and appropriate residence times can be achieved using flow-through mesh anodes and moderate current densities, which have proven to be the optimal configuration for this process.
Collapse
Affiliation(s)
- Victor de Aguiar Pedott
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Gier Della Rocca
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luciana Prazeres Mazur
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sergio Yesid Gomez Gonzalez
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina F P M Moreira
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
3
|
Cannon CG, Klusener PAA, Brandon NP, Kucernak ARJ. Aqueous Redox Flow Batteries: Small Organic Molecules for the Positive Electrolyte Species. CHEMSUSCHEM 2023; 16:e202300303. [PMID: 37205628 DOI: 10.1002/cssc.202300303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
There are a number of critical requirements for electrolytes in aqueous redox flow batteries. This paper reviews organic molecules that have been used as the redox-active electrolyte for the positive cell reaction in aqueous redox flow batteries. These organic compounds are centred around different organic redox-active moieties such as the aminoxyl radical (TEMPO and N-hydroxyphthalimide), carbonyl (quinones and biphenols), amine (e. g., indigo carmine), ether and thioether (e. g., thianthrene) groups. We consider the key metrics that can be used to assess their performance: redox potential, operating pH, solubility, redox kinetics, diffusivity, stability, and cost. We develop a new figure of merit - the theoretical intrinsic power density - which combines the first four of the aforementioned metrics to allow ranking of different redox couples on just one side of the battery. The organic electrolytes show theoretical intrinsic power densities which are 2-100 times larger than that of the VO2+ /VO2 + couple, with TEMPO-derivatives showing the highest performance. Finally, we survey organic positive electrolytes in the literature on the basis of their redox-active moieties and the aforementioned figure of merit.
Collapse
Affiliation(s)
- Christopher G Cannon
- Department of Chemistry, Imperial College London MSRH, White City, London, W12 0BZ, United Kingdom
| | - Peter A A Klusener
- Shell Global Solutions International B.V., Energy Transition Campus Amsterdam, Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Nigel P Brandon
- Department of Earth Science and Engineering, Imperial College London South Kensington, London, SW7 2AZ, United Kingdom
| | - Anthony R J Kucernak
- Department of Chemistry, Imperial College London MSRH, White City, London, W12 0BZ, United Kingdom
| |
Collapse
|
4
|
Wu J, Xu S. Manufacturing flow batteries using advanced 3D printing technology—A review. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1144237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
In the past decade, electrochemical energy storage systems such as rechargeable batteries have been explored as potential candidates for the large-scale storage of intermittent power sources. Among these, redox flow batteries stand out due to their low fabrication costs, high scalability, and long cycle life. Several redox flow battery pilot plants with MWh capacity have been constructed worldwide, although their commercial profitability is currently under investigation. 3D printing as a burgeoning technology offers unlimited opportunities in the process of optimizing the design, performance, and fabrication cost of redox flow batteries as compared to traditional top-down manufacturing techniques. This review discusses the principles of various redox flow batteries and 3D printing techniques, followed by explaining the advantages, disadvantages, and major factors to consider when using 3D printing in the construction of efficient redox flow batteries. The practical applications of 3D printing for redox flow batteries with different redox chemistries in the past decade are critically summarized, including classical all-vanadium, Zn/Br, and novel competitors. Lastly, a summary is provided along with outlooks that may provide valuable guidance for scientists interested in this research frontier.
Collapse
|
5
|
Sen R, Das S, Nath A, Maharana P, Kar P, Verpoort F, Liang P, Roy S. Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Front Chem 2022; 10:861604. [PMID: 35646820 PMCID: PMC9131097 DOI: 10.3389/fchem.2022.861604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Water oxidation has become very popular due to its prime role in water splitting and metal–air batteries. Thus, the development of efficient, abundant, and economical catalysts, as well as electrode design, is very demanding today. In this review, we have discussed the principles of electrocatalytic water oxidation reaction (WOR), the electrocatalyst and electrode design strategies for the most efficient results, and recent advancement in the oxygen evolution reaction (OER) catalyst design. Finally, we have discussed the use of OER in the Oxygen Maker (OM) design with the example of OM REDOX by Solaire Initiative Private Ltd. The review clearly summarizes the future directions and applications for sustainable energy utilization with the help of water splitting and the way forward to develop better cell designs with electrodes and catalysts for practical applications. We hope this review will offer a basic understanding of the OER process and WOR in general along with the standard parameters to evaluate the performance and encourage more WOR-based profound innovations to make their way from the lab to the market following the example of OM REDOX.
Collapse
Affiliation(s)
- Rakesh Sen
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Supriya Das
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Aritra Nath
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Priyanka Maharana
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Pradipta Kar
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
| | - Francis Verpoort
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, South Korea
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Pei Liang
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| |
Collapse
|
6
|
Abstract
The article deals with the urgent task of creating a technological and production basis for the development and serial production of energy storage systems with flow batteries and uninterruptible power systems based on them. Flow batteries are a highly efficient solution for long-term energy storage in critical and alternative energy facilities. The main advantage of the flow batteries is the ability to create a system with the required power and capacity without redundant parameters due to the fact that the characteristics of the system are regulated by independent blocks, as in a fuel cell. Among flow batteries, vanadium redox flow batteries (VRFB) are of particular interest, as they have a long service life. The main elements of a flow battery are the stack, which determines the power of the battery and its efficiency, and the electrolyte, which determines the energy capacity of the battery and its service life. A stand for testing the operating modes of the flow battery stack has been developed. A 5 kW flow battery operating on an electrolyte with the addition of hydrochloric acid, which is a stabilizer in new generation electrolytes, has been tested.
Collapse
|
7
|
Review of Bipolar Plate in Redox Flow Batteries: Materials, Structures, and Manufacturing. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00108-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
|
9
|
Buchanan CA, Ko E, Cira S, Balasubramanian M, Goldsmith BR, Singh N. Structures and Free Energies of Cerium Ions in Acidic Electrolytes. Inorg Chem 2020; 59:12552-12563. [PMID: 32845625 DOI: 10.1021/acs.inorgchem.0c01645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ce3+/Ce4+ redox potential changes with the electrolyte, which could be due to unequal anion complexation free energies between Ce3+ and Ce4+ or a change in the solvent electrostatic screening. Ce complexation with anions and solvent screening also affect the solubility of Ce and charge transfer kinetics for electrochemical reactions involving waste remediation and energy storage. We report the structures and free energies of cerium complexes in seven acidic electrolytes based on Extended X-ray Absorption Fine Structure, UV-vis, and Density Functional Theory calculations. Ce3+ coordinates with nine water molecules as [Ce(H2O)9]3+ in all studied electrolytes. However, Ce4+ complexes with anions in all electrolytes except HClO4. Thus, our results suggest that Ce4+-anion complexation leads to the large shifts in standard redox potential. Long range screening effects are smaller than the anion complexation energies but could be responsible for changes in the Ce solubility with acid.
Collapse
Affiliation(s)
- Cailin A Buchanan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eunbyeol Ko
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Spencer Cira
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mahalingam Balasubramanian
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nirala Singh
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Rivera FF, Miranda-Alcántara B, Orozco G, Ponce de León C, Arenas LF. Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid dynamics: Mathematical and modelling aspects of porous media. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1934-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractDescription of electrolyte fluid dynamics in the electrode compartments by mathematical models can be a powerful tool in the development of redox flow batteries (RFBs) and other electrochemical reactors. In order to determine their predictive capability, turbulent Reynolds-averaged Navier-Stokes (RANS) and free flow plus porous media (Brinkman) models were applied to compute local fluid velocities taking place in a rectangular channel electrochemical flow cell used as the positive half-cell of a cerium-based RFB for laboratory studies. Two different platinized titanium electrodes were considered, a plate plus a turbulence promoter and an expanded metal mesh. Calculated pressure drop was validated against experimental data obtained with typical cerium electrolytes. It was found that the pressure drop values were better described by the RANS approach, whereas the validity of Brinkman equations was strongly dependent on porosity and permeability values of the porous media.
Collapse
|
11
|
Zaidi S, Walsh F, Harito C. Mass transport control of oxygen reduction at graphite felt with subsequent decolourisation of RB-5 dye in a parallel plate flow reactor. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Kok MD, Jervis R, Tranter TG, Sadeghi MA, Brett DJ, Shearing PR, Gostick JT. Mass transfer in fibrous media with varying anisotropy for flow battery electrodes: Direct numerical simulations with 3D X-ray computed tomography. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.10.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Pauwels D, Geboes B, Hereijgers J, Choukroun D, De Wael K, Breugelmans T. The application of an electrochemical microflow reactor for the electrosynthetic aldol reaction of acetone to diacetone alcohol. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Zhang H, Zhang L, Han Y, Yu Y, Xu M, Zhang X, Huang L, Dong S. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells. Biosens Bioelectron 2017; 97:34-40. [DOI: 10.1016/j.bios.2017.05.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
15
|
Arenas LF, Ponce de León C, Walsh FC. Pressure drop through platinized titanium porous electrodes for cerium-based redox flow batteries. AIChE J 2017. [DOI: 10.1002/aic.16000] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luis F. Arenas
- Electrochemical Engineering Laboratory, Energy Technology Group, Dept. of Mechanical Engineering; University of Southampton; Southampton SO17 1BJ U.K
| | - Carlos Ponce de León
- Electrochemical Engineering Laboratory, Energy Technology Group, Dept. of Mechanical Engineering; University of Southampton; Southampton SO17 1BJ U.K
| | - Frank C. Walsh
- Electrochemical Engineering Laboratory, Energy Technology Group, Dept. of Mechanical Engineering; University of Southampton; Southampton SO17 1BJ U.K
| |
Collapse
|
16
|
Arenas LF, Ponce de León C, Boardman RP, Walsh FC. Characterisation of platinum electrodeposits on a titanium micromesh stack in a rectangular channel flow cell. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
3D-printed porous electrodes for advanced electrochemical flow reactors: A Ni/stainless steel electrode and its mass transport characteristics. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.03.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|