1
|
Islam R, Blakemore K, Farnum BH. Role of Solvent Coordination in the Multi-electron Redox Cycle of Nickel Diethyldithiocarbamate. Inorg Chem 2024; 63:15851-15862. [PMID: 39121391 DOI: 10.1021/acs.inorgchem.4c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Nickel(II) diethyldithiocarbamate, NiII(dtc)2, is known to undergo a 2e- ligand-coupled electron transfer (LCET) oxidation to form [NiIV(dtc)3]+. However, the thermodynamics and kinetics of this 2e- process can be greatly affected by solvent coordination. For low coordinating solvents like acetonitrile and acetone, 2e- oxidation is observed via cyclic voltammetry (CV) at a single potential while stronger coordinating solvents like methanol, N,N-dimethylformamide, dimethyl sulfoxide, and pyridine exhibit a 1e- oxidation wave by formation of [NiIII(dtc)2(sol)x]+ intermediates. The decay of these complexes to eventually yield [NiIV(dtc)3]+ was monitored as a function of CV scan rate and temperature to extract rate constants and activation parameters. A thorough analysis of activation parameters revealed that ΔHapp⧧ generally increased with solvent coordination ability, suggesting solvent dissociation was a key factor in the rate limiting step. However, ΔSapp⧧ was found to be negative for all solvents, suggesting an associative mechanism in line with dimer formation with NiII(dtc)2 to facilitate ligand exchange. Density function theory calculations supported the competitive nature of dissociative and associative steps. Using these calculations, we propose two paths for decay of [NiIII(dtc)2(sol)x]+ species based on the coordination strength of the solvent. These studies point to the ability of solvents to either aid or hinder multielectron LCET reactions.
Collapse
Affiliation(s)
- Rezoanul Islam
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Kallan Blakemore
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
2
|
Adamson NS, Blom SJ, Doeven EH, Connell TU, Hadden C, Knežević S, Sojic N, Fracassa A, Valenti G, Paolucci F, Ding J, Wang Y, Su B, Hua C, Francis PS. Electrochemiluminescence Enhanced by a Non-Emissive Dual Redox Mediator. Angew Chem Int Ed Engl 2024:e202412097. [PMID: 39136339 DOI: 10.1002/anie.202412097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 10/30/2024]
Abstract
A sulfonated tris(1-phenylpyrazolato)iridium(III) complex ([Ir(sppz)3]3-) serves as a proof-of-concept non-emissive enhancer of the widely used ECL detection system of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) with tri-n-propylamine (TPrA) co-reactant, acting through electrocatalysis of TPrA oxidation and efficient chemi-excitation of the luminophore. Using self-interference ECL spectroscopy, we show that the enhancer extends diffusion of the required electrogenerated precursors from the electrode surface. Previously reported enhancement through these pathways has been confounded by the inherent ECL of the enhancer, but the increase in [Ru(bpy)3]2+ ECL intensity using [Ir(sppz)3]3- was obtained without its concomitant emission. The most prominent enhancement (11-fold) occurred at low potentials associated with the 'indirect' co-reactant ECL pathway, which translated to between 2- and 6-fold enhancement when the luminophore was immobilised on microbeads as a general model for enhanced ECL assays.
Collapse
Affiliation(s)
- Natasha S Adamson
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Steven J Blom
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Egan H Doeven
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Timothy U Connell
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Callum Hadden
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Sara Knežević
- UMR 5255, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, University of Bordeaux, 33607, Pessac, France
| | - Neso Sojic
- UMR 5255, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, University of Bordeaux, 33607, Pessac, France
| | - Alessandro Fracassa
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Giovanni Valenti
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Francesco Paolucci
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yafeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Carol Hua
- School of Chemistry, The University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Paul S Francis
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| |
Collapse
|
3
|
Doeven EH, Connell TU, Sinha N, Wenger OS, Francis PS. Electrochemiluminescence of a First-Row d 6 Transition Metal Complex. Angew Chem Int Ed Engl 2024; 63:e202319047. [PMID: 38519420 DOI: 10.1002/anie.202319047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
We report the electrochemiluminescence (ECL) of a 3d6 Cr(0) complex ([Cr(LMes)3]; λem=735 nm) with comparable photophysical properties to those of ECL-active complexes of 4d6 or 5d6 precious metal ions. The electrochemical potentials of [Cr(LMes)3] are more negative than those of [Ir(ppy)3] and render the [Cr(LMes)3]* excited state inaccessible through conventional co-reactant ECL with tri-n-propylamine or oxalate. ECL can be obtained, however, through the annihilation route in which potentials sufficient to oxidise and reduce the luminophore are alternately applied. When combined with [Ir(ppy)3] (λem=520 nm), the annihilation ECL of [Cr(LMes)3] was greatly enhanced whereas that of [Ir(ppy)3] was diminished. Under appropriate conditions, the relative intensities of the two spectrally distinct emissions can be controlled through the applied potentials. From this starting point for ECL with 3d6 metal complexes, we discuss some directions for future development.
Collapse
Affiliation(s)
- Egan H Doeven
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Timothy U Connell
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- School of Chemical Sciences, Indian Institute of Technology (IIT) Mandi Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Paul S Francis
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
4
|
Luff MS, Walther L, Finze M, Radius U. NHC-ligated nickel(II) cyanoborate complexes and salts. Dalton Trans 2024; 53:5391-5400. [PMID: 38415451 DOI: 10.1039/d4dt00231h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A comprehensive study on the synthesis and characterization of NHC-ligated nickel(II) cyanoborates (CBs) is presented (NHC = N-heterocyclic carbene). Nickel(II) cyanoborates Ni[BH2(CN)2]2·H2O (Ib·H2O), Ni[BH(CN)3]2·0.5H2O (Ic·0.5H2O), Ni[B(CN)4]2·H2O (Id·H2O) were reacted with selected NHCs of different steric size. The reaction of the nickel cyanoborates with small to medium-sized NHCs Me2ImMe and iPr2Im (R2Im = 1,3-di-organyl-imidazolin-2-ylidene; R2ImMe = 1,3-di-organyl-4,5-dimethyl-imidazolin-2-ylidene) afforded cyanoborate salts containing the rare homoleptic fourfold NHC-ligated nickel(II) cations [Ni(NHC)4]2+ (NHC = Me2ImMe (1c-d), iPr2Im (2c-d)) and cyanoborate counter-anions. Bulkier NHCs such as Mes2Im and Dipp2Im afforded complexes trans-[Ni(NHC)2(CB)2] (trans-4b, trans-5c). For the combination of the cyanoborate anion [BH2(CN)2]- and iPr2ImMe the salt of the tris-NHC complex [Ni(iPr2ImMe)3(NC-BH2CN)][BH2(CN)2] (3b) was isolated. Salt metathesis of NHC-ligated nickel(II) halides (Ni(NHC)2X2) (X = Cl, Br) with silver(I) and alkali metal cyanoborates were used to synthesize mono- and disubstituted coordination compounds of the type cis- or trans-[Ni(NHC)2(CB)X] (cis-10c, cis-11c, trans-12b) and cis- or trans-[Ni(NHC)2(CB)2] (cis-13b, cis-14a-c, trans-14a-b, trans-15b, trans-5b). Further investigations reveal that NHC-ligated cyanoborate complexes can act as building blocks for coordination polymers, as observed for structurally characterized 1∞{trans-[Ni(Mes2Im)2(μ2-[NC-BH2-CN])2]·2Ag(μ2-[BH2(CN)2])} (trans-5b·Ag). This study demonstrates the diverse character of cyanoborates in coordination chemistry as both, non-coordinating counter-anions, and weakly to medium coordinating anions forming novel transition metal complexes and salts. It provides evidence that a proper choice of cyanoborate and a proper choice of co-ligand can lead to a rich coordination chemistry of cyanoborate anions.
Collapse
Affiliation(s)
- Martin S Luff
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Luis Walther
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
5
|
Losada IB, Persson P. Photoredox matching of earth-abundant photosensitizers with hydrogen evolving catalysts by first-principles predictions. J Chem Phys 2024; 160:074302. [PMID: 38375904 DOI: 10.1063/5.0174837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Photoredox properties of several earth-abundant light-harvesting transition metal complexes in combination with cobalt-based proton reduction catalysts have been investigated computationally to assess the fundamental viability of different photocatalytic systems of current experimental interest. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations using several GGA (BP86, BLYP), hybrid-GGA (B3LYP, B3LYP*), hybrid meta-GGA (M06, TPSSh), and range-separated hybrid (ωB97X, CAM-B3LYP) functionals were used to calculate relevant ground and excited state reduction potentials for photosensitizers, catalysts, and sacrificial electron donors. Linear energy correction factors for the DFT/TD-DFT results that provide the best agreement with available experimental reference results were determined in order to provide more accurate predictions. Among the selection of functionals, the B3LYP* and TPSSh sets of correction parameters were determined to give the best redox potentials and excited states energies, ΔEexc, with errors of ∼0.2 eV. Linear corrections for both reduction and oxidation processes significantly improve the predictions for all the redox pairs. In particular, for TPSSh and B3LYP*, the calculated errors decrease by more than 0.5 V against experimental values for catalyst reduction potentials, photosensitizer oxidation potentials, and electron donor oxidation potentials. Energy-corrected TPSSh results were finally used to predict the energetics of complete photocatalytic cycles for the light-driven activation of selected proton reduction cobalt catalysts. These predictions demonstrate the broader usefulness of the adopted approach to systematically predict full photocycle behavior for first-row transition metal photosensitizer-catalyst combinations more broadly.
Collapse
Affiliation(s)
- Iria Bolaño Losada
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
6
|
Luff MS, Kerpen C, Sprenger JAP, Finze M, Radius U. Nickel(II) Cyanoborates and Cyanoborate-Ligated Nickel(II) Complexes. Inorg Chem 2024; 63:2204-2216. [PMID: 38206799 DOI: 10.1021/acs.inorgchem.3c04164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nickel(II) cyanoborates Ni[BH2(CN)2]2·H2O (1b·H2O), Ni[BH(CN)3]2·0.5H2O (1c·0.5H2O), and Ni[B(CN)4]2·0.5H2O (1d·0.5H2O) were synthesized, and their reactivity with respect to dppeO2 (=1,2-bis-(diphenylphosphinoethane dioxide)), pyNO (=pyridine-N-oxide), dppe (=1,2-bis-(diphenylphosphinoethane), and DMSO (=dimethyl sulfoxide) was examined. Using these ligands, either cyanoborate (CB) complex salts of [Ni(dppe)2]2+ (2b-d) and [Ni(pyNO)6]2+ (3c-d) were isolated or complexes [Ni(DMSO)4{NC-B(CN)3}2] (1dDMSO) and [Ni(dppeO2)2{NC-B(CN)3}2] (1ddppeO2) were formed. Salt metathesis of [Ni(dppe)Cl2] with alkali metal cyanoborates resulted in mono- and disubstituted coordination compounds [Ni(dppe){NC-BH(CN)2}Cl] (5c) and [Ni(dppe){NC-BH2CN)2}] (4b), which decomposed to salts 2b-d. The synthetical pathways explored offer convenient routes to nickel(II) cyanoborates, nickel(II) complexes ligated with cyanoborates, and nickel(II) complex salts of cyanoborates. Further, our studies demonstrate the diverse character of cyanoborates in coordination chemistry as noncoordinating counteranions and also as medium coordinating anions forming novel transition-metal complexes and salts.
Collapse
Affiliation(s)
- Martin S Luff
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Kerpen
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan A P Sprenger
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14159483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thermo-electrochemical cells (also known as thermocells, TECs) represent a promising technology for harvesting and exploiting low-grade waste heat (<100–150 °C) ubiquitous in the modern environment. Based on temperature-dependent redox reactions and ion diffusion, emerging liquid-state thermocells convert waste heat energy into electrical energy, generating power at low costs, with minimal material consumption and negligible carbon footprint. Recent developments in thermocell performances are reviewed in this article with specific focus on new redox couples, electrolyte optimisation towards enhancing power output and operating temperature regime and the use of carbon and other nanomaterials for producing electrodes with high surface area for increasing current density and device performance. The highest values of output power and cell potentials have been achieved for the redox ferri/ferrocyanide system and Co2+/3+, with great opportunities for further development in both aqueous and non-aqueous solvents. New thermoelectric applications in the field include wearable and portable electronic devices in the health and performance-monitoring sectors; using body heat as a continuous energy source, thermoelectrics are being employed for long-term, continuous powering of these devices. Energy storage in the form of micro supercapacitors and in lithium ion batteries is another emerging application. Current thermocells still face challenges of low power density, conversion efficiency and stability issues. For waste-heat conversion (WHC) to partially replace fossil fuels as an alternative energy source, power generation needs to be commercially viable and cost-effective. Achieving greater power density and operations at higher temperatures will require extensive research and significant developments in the field.
Collapse
|
8
|
Holubowitch NE, Nguyen G. Dimerization of [Fe III(bpy) 3] 3+ in Aqueous Solutions: Elucidating a Mechanism Based on Historical Proposals, Electrochemical Data, and Computational Free Energy Analysis. Inorg Chem 2022; 61:9541-9556. [PMID: 35699660 DOI: 10.1021/acs.inorgchem.2c00640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron(II) tris-bipyridine, [FeII(bpy)3]2+, is a historically significant organometallic coordination complex with attractive redox and photophysical properties. With respect to energy storage, it is a low-cost, high-redox potential complex and thus attractive for use as a catholyte in aqueous redox flow batteries. Despite these favorable characteristics, its oxidized Fe(III) form undergoes dimerization to form μ-O-[FeIII(bpy)2(H2O)]24+, leading to a dramatic ∼0.7 V decrease during battery discharge. To date, the energetics and complete mechanism of this slow, sequential electrochemical-chemical (EC) process, which includes electron transfer, nucleophilic attack, ligand cleavage, μ-oxo bond formation, and spin state transition, have not been elucidated. Using cyclic voltammetry, redox flow battery data, and density functional theory calculations guided by previously proposed mechanisms, we modeled more than 100 complexes and performed more than 50 geometry scans to resolve the key steps dictating these complex chemical processes. Quantitative free energy surfaces are developed to model the mechanism of dimerization accounting for the spins and identities of any possible Fe(II), Fe(III), or Fe(IV) intermediates. Electrochemical reduction of the dimer regenerates [FeII(bpy)3]2+ in an overall reversible process. Computational electrochemistry interrogates the influence of spin state, coordination environment, and molecular conformation at the electrode-electrolyte interface through a proposed stepwise dimer reduction process. Experimentally, we show that the considerable overpotential associated with this event can be catalytically mitigated with disparate materials, including platinum, copper hexacyanoferrate, and activated carbon. The findings are of fundamental and applied significance and could elevate [FeII(bpy)3]2+ and its derivatives to play a vital role in the burgeoning renewable energy economy.
Collapse
Affiliation(s)
- Nicolas E Holubowitch
- Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, United States
| | - Giang Nguyen
- Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, United States
| |
Collapse
|
9
|
Jin XY, Dai X, Zhao J, Ge Q, Liu M, Tao Z, Cong H. Improved electrochemical properties of polypyrrole with cucurbit[6]uril via supramolecular interactions. Phys Chem Chem Phys 2022; 24:13773-13783. [DOI: 10.1039/d2cp00321j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supramolecular polymer was developed through the encapsulation of polypyrrole by cucurbit[6]uril (PPy@Q[6]), which was employed as the electrode material to improve the capacitor ability of conductive polypyrrole. In the...
Collapse
|
10
|
Magra K, Francés‐Monerris A, Cebrián C, Monari A, Haacke S, Gros PC. Bidentate Pyridyl‐NHC Ligands: Synthesis, Ground and Excited State Properties of Their Iron(II) Complexes and the Role of the fac/mer Isomerism. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kévin Magra
- Université de Lorraine, CNRS, L2CM 57000 Metz France
| | | | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT 54000 Nancy France
- Université de de Paris and CNRS, Itodys 75006 Paris France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, IPCMS 67000 Strasbourg France
| | | |
Collapse
|
11
|
Ahoulou S, Vilà N, Pillet S, Carteret C, Schaniel D, Walcarius A. Multi-stimuli Photo and Redox-active Nanostructured Mesoporous Silica Films on Transparent Electrodes. Chemphyschem 2021; 22:2464-2477. [PMID: 34708493 DOI: 10.1002/cphc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Silica matrices hosting transition metal guest complexes may offer remarkable platforms for the development of advanced functional devices. We report here the elaboration of ordered and vertically oriented mesoporous silica thin films containing covalently attached tris(bipyridine)iron derivatives using a combination of electrochemically assisted self-assembly (EASA) method and Huisgen cycloaddition reaction. Such a versatile approach is primarily used to bind nitrogen-based chelating ligands such as (4-[(2-propyn-1-yloxy)]4'-methyl-2,2'-bypiridine, bpy') inside the nanochannels. Further derivatization of the bpy'-functionalized silica thin films is then achieved via a subsequent in-situ complexation step to generate [Fe(bpy)2 (bpy')]2+ inside the mesopore channels. After giving spectroscopic evidences for the presence of such complexes in the functionalized film, electrochemistry is used to transform the confined diamagnetic (S=0) F e L S b p y 2 b p y ' 2 + species to paramagnetic (S=1/2) oxidized F e L S b p y 2 b p y ' 3 + species in a reversible way, while blue light irradiation (λ=470 nm) enables populating the short-lived paramagnetic (S=2) F e H S b p y 2 b p y ' 2 + excited state. [Fe(bpy)2 (bpy')]2+ -functionalized ordered films are therefore both electro- and photo-active through the manipulation of the oxidation state and spin state of the confined complexes, paving the way for their integration in optoelectronic devices.
Collapse
Affiliation(s)
- Samuel Ahoulou
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France.,Université de Lorraine, CRM2 UMR 7036, 54000, Nancy, France
| | - Neus Vilà
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| | | | - Cédric Carteret
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| | | | - Alain Walcarius
- Université de Lorraine, CNRS, LCPME UMR 7564, 54000, Nancy, France
| |
Collapse
|
12
|
Li M, Hong M, Dargusch M, Zou J, Chen ZG. High-efficiency thermocells driven by thermo-electrochemical processes. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Zafar A, Imtiaz-ud-Din., Ahmed S, Bučar DK, Tahir MN, Palgrave RG. Synthesis, structural analysis, electrochemical and magnetic properties of tetrachloroferrate ionic liquids. NEW J CHEM 2021. [DOI: 10.1039/d1nj01400e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight ionic liquids have been synthesized with the tetrachloroferrate anion and varying cations, with the general formula of [RA]+[FeCl4]− (R = –CH3, –CH2C6H5; A = pyridine, benzimidazole, trimethylamine, triphenylphosphine).
Collapse
Affiliation(s)
- Anham Zafar
- Department of Chemistry
- University College London
- London
- UK
- Department of Chemistry
| | - Imtiaz-ud-Din.
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Safeer Ahmed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | | | | | | |
Collapse
|
14
|
Dong S, Cabral DM, Pringle JM, Macfarlane DR. Exploring the electrochemical properties of mixed ligand Fe(II) complexes as redox couples. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Robb BH, Waters SE, Marshak MP. Evaluating aqueous flow battery electrolytes: a coordinated approach. Dalton Trans 2020; 49:16047-16053. [PMID: 33201166 DOI: 10.1039/d0dt02462g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Here, we outline some basic pitfalls in the electrochemical investigation of aqueous metal complexes and advocate for the use of bulk electrolysis in redox flow cells for electrolyte analysis. We demonstrate the methods of operation and performance of a lab scale redox flow battery (RFB), which is assembled from unmodified, commercially available material and cycled with a vanadium electrolyte in order to provide a comparative baseline of expected performance. Common misconceptions about the thermodynamic window for water splitting are addressed and further express the need to develop next-generation aqueous redox flow battery electrolytes. Although non-aqueous electrolytes are a popular approach, they suffer from distinct challenges that limit energy and power density in comparison with aqueous electrolytes. Expanding the scope of aqueous electrolytes to include metal-chelate complexes allows electrolytes to be as tailorable as organic species, while maintaining robust metal-based redox processes. A flow battery assembly and operation guide is provided to help facilitate the use of flow battery testing in the evaluation of next-generation electrolytes.
Collapse
Affiliation(s)
- Brian H Robb
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
16
|
Brzechwa-Chodzyńska A, Zieliński M, Gilski M, Harrowfield JM, Stefankiewicz AR. Dynamer and Metallodynamer Interconversion: An Alternative View to Metal Ion Complexation. Inorg Chem 2020; 59:8552-8561. [PMID: 32484661 DOI: 10.1021/acs.inorgchem.0c01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A bifunctional molecule containing both a bidentate binding site for metal ions and an aminopyrimidine H-bond donor-acceptor site has been synthesized, and its properties, in its free and coordinated forms, have been established in solution and in the solid state by analytical and spectroscopic methods as well as by X-ray structure determinations. Structural characterization has shown that it forms a one-dimensional H-bonded polymeric assembly in the solid state, while spectroscopic measurements indicate that it also aggregates in solution. The reaction of a simple Fe(II) salt with this assembly results in the emergence of two geometrical isomers of the complex: [FeL3](BF4)2·9H2O-C1 (meridional, mer) and [FeL3]2(SiF6)(BF4)2·12H2O-C2 (facial, fac). While, complex C1 in the solid state generates a one-dimensional H-bonded polymer involving just two ligands on each Fe center, with the chirality of the complex units alternating along the polymer chain, the structure of complex C2 shows NH···N interactions seen in both the ligand and mer complex (C1) structures to be completely absent. Physicochemical properties of the free and complexed ligand differ substantially.
Collapse
Affiliation(s)
- Anna Brzechwa-Chodzyńska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technologies, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Michał Zieliński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Mirosław Gilski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Jack M Harrowfield
- ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technologies, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
17
|
VanGelder LE, Schreiber E, Wind ML, Limberg C, Matson EM. Investigation of Cubic Fe 4 M 4 Frameworks for Application in Nonaqueous Energy Storage. Chemistry 2019; 25:14421-14429. [PMID: 31497908 DOI: 10.1002/chem.201903360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Indexed: 11/09/2022]
Abstract
Multimetallic complexes have recently seen increased attention as next-generation charge carriers for nonaqueous redox flow batteries. Herein, we report the electrochemical performance of a molecular iron-molybdenum oxido complex, {[(Me3 TACN)Fe][μ-(MoO4 κ3 O,O',O")]}4 (Fe4 Mo4 O16 ). In symmetric battery charging schematics, Fe4 Mo4 O16 facilitates reversible two-electron storage with coulombic efficiencies >99 % over 100 cycles (5 days) with no molecular decomposition and minimal capacity fade. Energy efficiency throughout cycling remained high (∼82 %), as a result of the rapid electron-transfer kinetics observed for each of the complex's four redox events. We also report the synthesis of the analogous synthetic frameworks featuring tungstate vertices or bridging-sulfide moieties, revealing key observations relevant to structure-function relationships and design criteria for these types of heterometallic ensembles.
Collapse
Affiliation(s)
- Lauren E VanGelder
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Eric Schreiber
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Marie-Louise Wind
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
18
|
Affiliation(s)
- Nikolai V. Ignat'ev
- Institut für Anorganische Chemie; Institut für nachhaltige Chemie & Katalyse mit Bor (ICB); Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB); Consultant, Merck KGaA; 64293 Darmstadt Germany
| | - Maik Finze
- Institut für Anorganische Chemie; Institut für nachhaltige Chemie & Katalyse mit Bor (ICB); Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
19
|
Burmistrov I, Kovyneva N, Gorshkov N, Gorokhovsky A, Durakov A, Artyukhov D, Kiselev N. Development of new electrode materials for thermo-electrochemical cells for waste heat harvesting. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ref.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Magra K, Domenichini E, Francés-Monerris A, Cebrián C, Beley M, Darari M, Pastore M, Monari A, Assfeld X, Haacke S, Gros PC. Impact of the fac/mer Isomerism on the Excited-State Dynamics of Pyridyl-carbene Fe(II) Complexes. Inorg Chem 2019; 58:5069-5081. [DOI: 10.1021/acs.inorgchem.9b00138] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kevin Magra
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France
| | | | | | | | - Marc Beley
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Mohamed Darari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Xavier Assfeld
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, IPCMS, F-67000 Strasbourg, France
| | | |
Collapse
|
21
|
Dupont MF, MacFarlane DR, Pringle JM. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. Chem Commun (Camb) 2018; 53:6288-6302. [PMID: 28534592 DOI: 10.1039/c7cc02160g] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thermo-electrochemical cells (also called thermocells) are promising devices for harvesting waste heat for the sustainable production of energy. Research into thermocells has increased significantly in recent years, driven by advantages such as their ability to continuously convert heat into electrical energy without producing emissions or consuming materials. Until relatively recently, the commercial viability of thermocells was limited by their low power output and conversion efficiency. However, there have lately been significant advances in thermocell performance as a result of improvements to the electrode materials, electrolyte and redox chemistry and various features of the cell design. This article overviews these recent developments in thermocell research, including the development of new redox couples, the optimisation of electrolytes for improved power output and high-temperature operation, the design of high surface area electrodes for increased current density and device flexibility, and the optimisation of cell design to further enhance performance.
Collapse
Affiliation(s)
- M F Dupont
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials, Deakin University, Geelong, Australia.
| | | | | |
Collapse
|
22
|
Perdizio Sakita AM, Della Noce R, Fugivara CS, Benedetti AV. Semi-integrative Voltammetry as an Efficient Tool To Study Simple Electrochemical Systems in Deep Eutectic Solvents. Anal Chem 2017; 89:8296-8303. [DOI: 10.1021/acs.analchem.7b01453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Rodrigo Della Noce
- Centro
de Química Estrutural-CQE, Departament of Chemical Engineering,
Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Cecílio S. Fugivara
- Instituto
de Química, UNESP-Universidade Estadual Paulista, 14800-900 Araraquara, Brazil
| | - Assis V. Benedetti
- Instituto
de Química, UNESP-Universidade Estadual Paulista, 14800-900 Araraquara, Brazil
| |
Collapse
|
23
|
Duarte GM, Braun JD, Giesbrecht PK, Herbert DE. Redox non-innocent bis(2,6-diimine-pyridine) ligand–iron complexes as anolytes for flow battery applications. Dalton Trans 2017; 46:16439-16445. [DOI: 10.1039/c7dt03915h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reduce, reuse, recycle: Coordination complexes of ‘non-innocent’ diimine-pyridine ligands (DIP) are shown to be stable, multi-electron anolytes for redox-flow batteries.
Collapse
Affiliation(s)
- Gabriel M. Duarte
- Department of Chemistry and the Manitoba Institute for Materials
- University of Manitoba
- Winnipeg
- Canada
| | - Jason D. Braun
- Department of Chemistry and the Manitoba Institute for Materials
- University of Manitoba
- Winnipeg
- Canada
| | - Patrick K. Giesbrecht
- Department of Chemistry and the Manitoba Institute for Materials
- University of Manitoba
- Winnipeg
- Canada
| | - David E. Herbert
- Department of Chemistry and the Manitoba Institute for Materials
- University of Manitoba
- Winnipeg
- Canada
| |
Collapse
|
24
|
Yang H, Liu Y, Ning H, Lei J, Hu G. Synthesis, structure and properties of imidazolium-based energetic ionic liquids. RSC Adv 2017. [DOI: 10.1039/c7ra05601j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Energetic ionic liquids bearing a wide liquid temperature range were easily synthesized, which display good thermal stabilities and energetic properties.
Collapse
Affiliation(s)
- Haijun Yang
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Yuejia Liu
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Hongli Ning
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Jianlei Lei
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Gang Hu
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
| |
Collapse
|