1
|
Passantino JM, Christiansen BA, Nabhan MA, Parkerson ZJ, Oddo TD, Cliffel DE, Jennings GK. Photoactive and conductive biohybrid films by polymerization of pyrrole through voids in photosystem I multilayer films. NANOSCALE ADVANCES 2023; 5:5301-5308. [PMID: 37767044 PMCID: PMC10521210 DOI: 10.1039/d3na00354j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The combination of conducting polymers with electro- and photoactive proteins into thin films holds promise for advanced energy conversion materials and devices. The emerging field of protein electronics requires conductive soft materials in a composite with electrically insulating proteins. The electropolymerization of pyrrole through voids in a drop-casted photosystem I (PSI) multilayer film enables the straightforward fabrication of photoactive and conductive biohybrid films. The rate of polypyrrole (PPy) growth is reduced by the presence of the PSI film but is insensitive to its thickness, suggesting that rapid diffusion of pyrrole through the voids within the PSI film enables initiation at vacant areas on the gold surface. The base thickness of the composite tends to increase with time, as PPy chains propagate through and beyond the PSI film, coalescing to exhibit a tubule-like morphology as observed by scanning electron microscopy. Increasing amounts of PPy greatly increase the capacitance of the composite films in a manner almost identical to that of pure PPy films grown from unmodified gold, consistent with a high polymer/aqueous interfacial area and a conductive composite film. While PPy is not photoactive here, all composite films, including those with large amounts of PPy, exhibit photocurrents when irradiated by white light in the presence of redox mediator species. Optimization of the Py electropolymerization time is necessary, as increasing amounts of PPy lead to decreased photocurrent density due to a combination of light absorbance by the polymer and reduced accessibility of redox species to active PSI sites.
Collapse
Affiliation(s)
- Joshua M Passantino
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Blake A Christiansen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Marc A Nabhan
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Zane J Parkerson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Tyler D Oddo
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University Nashville TN 37235-1822 USA
| | - G Kane Jennings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| |
Collapse
|
2
|
Torabi N, Rousseva S, Chen Q, Ashrafi A, Kermanpur A, Chiechi RC. Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I. RSC Adv 2022; 12:8783-8791. [PMID: 35424820 PMCID: PMC8984948 DOI: 10.1039/d1ra08908k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transfer layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component. Together with polytyrosine–polyaniline as a hole transfer layer, this device architecture results in an open-circuit voltage of 0.3 V, a fill factor of 38% and a short-circuit current density of 5.6 mA cm−2 demonstrating good coupling between photosystem I and the electrodes. The best-performing device reached an external power conversion efficiency of 0.64%, the highest for any solid-state photosystem I-based photovoltaic device that has been reported to date. Our results demonstrate that the functionality of photosystem I in the non-natural environment of solid-state biophotovoltaic cells can be improved through the modification of electrodes with efficient charge-transfer layers. The combination of reduced graphene oxide with gold nanoparticles caused tailoring of the electronic structure and alignment of the energy levels while also increasing electrical conductivity. The decoration of graphene electrodes with gold nanoparticles is a generalizable approach for enhancing charge-transfer across interfaces, particularly when adjusting the levels of the active layer is not feasible, as is the case for photosystem I and other biological molecules. This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transport layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component.![]()
Collapse
Affiliation(s)
- Nahid Torabi
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands.,Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands.,Department of Materials Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Sylvia Rousseva
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands.,Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Qi Chen
- Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ali Ashrafi
- Department of Materials Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Ahmad Kermanpur
- Department of Materials Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands.,Zernike Institute for Advanced Materials Nijenborgh 4 9747 AG Groningen The Netherlands.,Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| |
Collapse
|
3
|
Abstract
The biological process of photosynthesis was critical in catalyzing the oxygenation of Earth’s atmosphere 2.5 billion years ago, changing the course of development of life on Earth. Recently, the fields of applied and synthetic photosynthesis have utilized the light-driven protein–pigment supercomplexes central to photosynthesis for the photocatalytic production of fuel and other various valuable products. The reaction center Photosystem I is of particular interest in applied photosynthesis due to its high stability post-purification, non-geopolitical limitation, and its ability to generate the greatest reducing power found in nature. These remarkable properties have been harnessed for the photocatalytic production of a number of valuable products in the applied photosynthesis research field. These primarily include photocurrents and molecular hydrogen as fuels. The use of artificial reaction centers to generate substrates and reducing equivalents to drive non-photoactive enzymes for valuable product generation has been a long-standing area of interest in the synthetic photosynthesis research field. In this review, we cover advances in these areas and further speculate synthetic and applied photosynthesis as photocatalysts for the generation of valuable products.
Collapse
|
4
|
Teodor AH, Bruce BD. Putting Photosystem I to Work: Truly Green Energy. Trends Biotechnol 2020; 38:1329-1342. [PMID: 32448469 DOI: 10.1016/j.tibtech.2020.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Meeting growing energy demands sustainably is one of the greatest challenges facing the world. The sun strikes the Earth with sufficient energy in 1.5 h to meet annual world energy demands, likely making solar energy conversion part of future sustainable energy production plans. Photosynthetic organisms have been evolving solar energy utilization strategies for nearly 3.5 billion years, making reaction centers including the remarkably stable Photosystem I (PSI) especially interesting for biophotovoltaic device integration. Although these biohybrid devices have steadily improved, their output remains low compared with traditional photovoltaics. We discuss strategies and methods to improve PSI-based biophotovoltaics, focusing on PSI-surface interaction enhancement, electrolytes, and light-harvesting enhancement capabilities. Desirable features and current drawbacks to PSI-based devices are also discussed.
Collapse
Affiliation(s)
- Alexandra H Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Barry D Bruce
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Tong J, Zhang P, Zhang L, Zhang D, Beratan DN, Song H, Wang Y, Li T. A Robust Bioderived Wavelength-Specific Photosensor Based on BLUF Proteins. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 310:127838. [PMID: 32296265 PMCID: PMC7157799 DOI: 10.1016/j.snb.2020.127838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photosensitive proteins are naturally evolved photosensors that often respond to light signals of specific wavelengths. However, their poor stability under ambient conditions hinders their applications in non-biological settings. In this proof-of-principle study, we grafted the blue light using flavin (BLUF) protein reconstructed with flavin adenine dinucleotide (FAD) or roseoflavin (RoF) onto pristine graphene, and achieved selective sensitivity at 450 nm or 500 nm, respectively. We improved the thermal and operational stability substantially via structure-guided cross-linking, achieving 6-month stability under ambient condition and normal operation at temperatures up to 200 °C. Furthermore, the device exhibited rare negative photoconductivity behavior. The origins of this negative photoconductivity behavior were elucidated via a combination of experimental and theoretical analysis. In the photoelectric conversion studies, holes from photoexcited flavin migrated to graphene and recombined with electrons. The device allows facile modulation and detection of charge transfer, and provides a versatile platform for future studies of photoinduced charge transfer in biosensors as well as the development of stable wavelength-selective biophotosensors.
Collapse
Affiliation(s)
- Jing Tong
- Science and Technology on Microsytem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Lei Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - Dongwei Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haifeng Song
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - Tie Li
- Science and Technology on Microsytem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
6
|
Wolfe KD, Dervishogullari D, Stachurski CD, Passantino JM, Kane Jennings G, Cliffel DE. Photosystem I Multilayers within Porous Indium Tin Oxide Cathodes Enhance Mediated Electron Transfer. ChemElectroChem 2019. [DOI: 10.1002/celc.201901628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kody D. Wolfe
- Interdisciplinary Materials Science Program Vanderbilt University Nashville Tennessee 37235-1822 United States
| | - Dilek Dervishogullari
- Department of Chemistry Vanderbilt University Nashville Tennessee 37235-1822 United States
| | | | - Joshua M. Passantino
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee 37235-1822 United States
| | - G. Kane Jennings
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee 37235-1822 United States
| | - David E. Cliffel
- Department of Chemistry Vanderbilt University Nashville Tennessee 37235-1822 United States
| |
Collapse
|
7
|
Zhao F, Ruff A, Rögner M, Schuhmann W, Conzuelo F. Extended Operational Lifetime of a Photosystem-Based Bioelectrode. J Am Chem Soc 2019; 141:5102-5106. [PMID: 30888806 DOI: 10.1021/jacs.8b13869] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The development of bioelectrochemical assemblies for sustainable energy transformation constitutes an increasingly important field of research. Significant progress has been made in the development of semiartificial devices for conversion of light into electrical energy by integration of photosynthetic biomolecules on electrodes. However, sufficient long-term stability of such biophotoelectrodes has been compromised by reactive species generated under aerobic operation. Therefore, meeting the requirements of practical applications still remains unsolved. We present the operation of a photosystem I-based photocathode using an electron acceptor that enables photocurrent generation under anaerobic conditions as the basis for a biodevice with substantially improved stability. A continuous operation lifetime considerably superior to previous reports and at higher light intensities is paving the way toward the potential application of semiartificial energy conversion devices.
Collapse
Affiliation(s)
- Fangyuan Zhao
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry , Ruhr University Bochum , Universitätsstraße 150 , D-44780 Bochum , Germany
| | - Adrian Ruff
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry , Ruhr University Bochum , Universitätsstraße 150 , D-44780 Bochum , Germany
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology and Biotechnology , Ruhr University Bochum , Universitätsstraße 150 , D-44780 Bochum , Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry , Ruhr University Bochum , Universitätsstraße 150 , D-44780 Bochum , Germany
| | - Felipe Conzuelo
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry , Ruhr University Bochum , Universitätsstraße 150 , D-44780 Bochum , Germany
| |
Collapse
|
8
|
Scalable long-term extraction of photosynthetic electrons by simple sandwiching of nanoelectrode array with densely-packed algal cell film. Biosens Bioelectron 2018; 117:15-22. [PMID: 29879583 DOI: 10.1016/j.bios.2018.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022]
Abstract
Direct extraction of photosynthetic electrons from the whole photosynthetic cells such as plant cells or algal cells can be highly efficient and sustainable compared to other approaches based on isolated photosynthetic apparatus such as photosystems I, II, and thylakoid membranes. However, insertion of nanoelectrodes (NEs) into individual cells are time-consuming and unsuitable for scale-up processes. We propose simple and efficient insertion of massively-populated NEs into cell films in which algal cells are densely packed in a monolayer. After stacking the cell film over an NE array, gentle pressing of the stack allows a large number of NEs to be inserted into the cells in the cell film. The NE array was fabricated by metal-assisted chemical etching (MAC-etching) followed by additional steps of wet oxidation and oxide etching. The cell film was prepared by mixing highly concentrated algal cells with alginate hydrogel. Photosynthetic currents of up to 106 nA/cm2 was achieved without aid of mediators, and the photosynthetic function was maintained for 6 days after NE array insertion into algal cells.
Collapse
|
9
|
Robinson MT, Cliffel DE, Jennings GK. An Electrochemical Reaction-Diffusion Model of the Photocatalytic Effect of Photosystem I Multilayer Films. J Phys Chem B 2017; 122:117-125. [DOI: 10.1021/acs.jpcb.7b10374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maxwell T. Robinson
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David E. Cliffel
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - G. Kane Jennings
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
10
|
Robinson MT, Simons CE, Cliffel DE, Jennings GK. Photocatalytic photosystem I/PEDOT composite films prepared by vapor-phase polymerization. NANOSCALE 2017; 9:6158-6166. [PMID: 28447696 DOI: 10.1039/c7nr01158j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photosystem I (PSI) achieves photo-induced charge separation with outstanding internal quantum efficiency and has been used to improve the performance of various photoelectrochemical systems. Herein, we describe a fast and versatile technique to assemble composite films containing PSI and a chosen intrinsically conductive polymer (ICP). A mixture of PSI and a Friedel-Crafts catalyst (FeCl3) is drop cast atop a substrate of choice. Contact with ICP monomer vapor at low temperature stimulates polymer growth throughout PSI films in minutes. We assess the effects of PSI loading on the rapid vapor-phase growth of poly(3,4-ethylenedioxythiophene) (PEDOT) within and above PSI multilayer films, and characterize the resulting film's thickness, electrochemical capacitance, and photocatalytic response. Composite films generate cathodic photocurrent when in contact with an aqueous redox electrolyte, confirming retention of the photocatalytic activity of the polymer-entrapped PSI multilayer assembly.
Collapse
Affiliation(s)
- M T Robinson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|