1
|
Huang Y, Xiao Z, Wu S, Zhang X, Wang J, Huangfu X. Biochemical transformation and bioremediation of thallium in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176028. [PMID: 39265674 DOI: 10.1016/j.scitotenv.2024.176028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Thallium (Tl) is a toxic element associated with minerals, and its redistribution is facilitated by both geological and anthropogenic activities. In the natural environment, the transformation and migration of Tl mediated by (micro)organisms have attracted increasing attention. This review presents an overview of the biochemical transformation of Tl and the bioremediation strategies for Tl contamination. In the environment, Tl exists in various forms and originates from diverse sources. The global distribution characteristics of Tl in various media are summarized here, while its speciation and toxicity mechanism to organisms are elucidated. Interactions between (micro)organisms and Tl are commonly observed in the environment. Microbial response mechanisms to typical Tl exposure are analyzed at both species and gene levels, and the possibility of microorganisms as bio-indicators for monitoring Tl contamination is also highlighted. The processes and mechanisms involved in the microbial and benthic mediated transformation of Tl, as well as its enrichment by plants, are discussed. Additionally, in situ bioremediation strategies for Tl contamination and bio-treatment techniques for Tl-containing wastewater are summarized. Finally, the existing knowledge gaps and future research challenges are emphasized, including Tl distribution characteristics in the atmosphere and ocean, the key molecular mechanisms underlying Tl transformation by organisms, the screening of potential Tl oxidizing microorganisms and hyperaccumulators, as well as the revelation of global biogeochemical cycling pathways of Tl.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhentao Xiao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Chen W, Huangfu X, Xiong J, Liu J, Wang H, Yao J, Liu H, He Q, Ma J, Liu C, Chen Y. Retention of thallium(I) on goethite, hematite, and manganite: Quantitative insights and mechanistic study. WATER RESEARCH 2022; 221:118836. [PMID: 35839593 DOI: 10.1016/j.watres.2022.118836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The reversibility of monovalent thallium (Tl) absorption on widely distributed iron/manganese secondary minerals may affect environmental Tl migration and global cycling. Nevertheless, quantitative and mechanistic studies on the interfacial retention and release reactions involving Tl(I) are limited. In this study, batch and stirred-flow experiments, unified kinetics modeling, spectral detection, and theoretical calculations were used to elucidate the retention behaviors of Tl(I) on goethite, hematite, and manganite with different solution pH values and Tl loading concentrations. Sustained Tl(I) retention (kd, MeOHTl=0.005∼0.018 min-1) was induced by hydration of the surface hydroxyl groups. Rapid Tl(I) retention (kd,MeOTlOH=1.232∼2.917 min-1) was enhanced by the abundant hydroxide ions and deprotonated hydroxyl groups, which increased the Tl(I) binding ability. Compared to the ambient Tl concentration, pH had a more substantial effect on the formation and distribution of surface Tl(I) binding species. In alkaline environments, the large adsorption energy for Tl(I) binding to surface species (Eads=-6.14 eV) induced fast Tl(I) binding response on the surfaces of iron/manganese secondary minerals. This study provides new insights into the heterogeneous surface complexation and retention behaviors of Tl(I) and contributes to an in-depth understanding of the environmental fate of Tl and the remediation of Tl contamination.
Collapse
Affiliation(s)
- Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China.
| | - Jiaming Xiong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China
| | - Juchao Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China
| | - Hainan Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China
| | - Jinni Yao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China
| | - Yao Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
3
|
Yao J, Wang H, Ma C, Cao Y, Chen W, Gu L, He Q, Liu C, Xiong J, Ma J, Huangfu X, Liu H. Cotransport of thallium(I) with polystyrene plastic particles in water-saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126910. [PMID: 34416700 DOI: 10.1016/j.jhazmat.2021.126910] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Exploring the transport behaviors of thallium (Tl) in porous media is crucial for predicting Tl pollution in natural soils and groundwater. In recent years, the misuse of plastics has led to plastic becoming an emerging pollutant in soil. In this work, the effects of plastic particles on Tl(I) transport in water-saturated sand columns were investigated under different ionic strengths (ISs), pH values, and plastic particle sizes. The two-site nonequilibrium model was selected to fit the breakthrough curves (BTCs) of Tl(I). The results demonstrated that nanoplastics (NPs) accelerated Tl(I) transport at pH 7, which might be attributed to the competitive adsorption of NPs and Tl(I) on sand surfaces. However, at pH 5, the deposited NPs might provide more adsorption sites for Tl(I), and thus enhance its retention in the columns. In addition, the "straining" process could intercept microplastics (MPs) with Tl(I) that was attached under unfavorable attachment conditions, which would result in the inhibited mobility of Tl(I). On the other hand, the migration of plastics was restrained to some extent when Tl(I) was present. Overall, the findings from this work provided a new perspective for understanding the transport of Tl(I) and plastics in subsurface environments.
Collapse
Affiliation(s)
- Jinni Yao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hainan Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Cao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Li Gu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jiaming Xiong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Clematis D, Panizza M. Solid polymer electrolyte as an alternative approach for the electrochemical removal of herbicide from groundwater. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Liu C, Zhang G, Zhou W, Zhang K, Qu J, Liu H. Regulating Oriented Adsorption on Targeted Nickel Sites for Antibiotic Oxidation with Simultaneous Hydrogen Energy Recovery by a Direct Electrochemical Process. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18673-18682. [PMID: 33856754 DOI: 10.1021/acsami.1c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The efficiency of antibiotic oxidation by direct electrochemical processes based on transition metal electrodes is largely restricted by the adsorption capacity for single molecules on targeted active sites. Inspired by density functional theory (DFT) calculations, we found that the adsorption energy of sulfanilamide molecules on Ni sites could be markedly changed by regulating the local atomic environment of the Ni atoms (for NiCo2O4 and NiCoP, ΔGNi = -0.11 and +0.47 eV, respectively). The high electronegativity of oxygen changed the electron cloud density around the Ni atoms, leading to an oriented adsorption of SA on Ni sites. Moreover, the oriented adsorption on Ni sites occurs not only on NiCo2O4 but on the in situ-generated NiIIIOOH (ΔGNi = -0.09 eV). Consequently, utilizing NiCo2O4 as the anode resulted in superior removal performance (97% vs 55% efficiency) for SA oxidation, with a kinetic constant ∼10 times higher than that of NiCoP (0.031 min-1 vs 0.0029 min-1). Meanwhile, non-oriented adsorption reduced the competition between SA molecules and H+ for active sites, which benefitted the activity of the hydrogen evolution reaction at the NiCoP cathode (68 mV at j = 10 mA·cm-2, 0.5 mmol·L-1 SA added in). Furthermore, the in situ Raman spectra and DFT calculations confirmed that NiIIIOOH dominated the oxidation process and terminated it at the p-benzoquinone stage. These findings provide a feasible strategy to combine electrochemical antibiotic oxidation by Ni-based electrodes with hydrogen energy recovery.
Collapse
Affiliation(s)
- Chunlei Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Zhou
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Kai Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Wang H, Liu J, Yao J, He Q, Ma J, Chai H, Liu C, Hu X, Chen Y, Zou Y, Xiong J, Huangfu X. Transport of Tl(I) in water-saturated porous media: Role of carbonate, phosphate and macromolecular organic matter. WATER RESEARCH 2020; 186:116325. [PMID: 32846385 DOI: 10.1016/j.watres.2020.116325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Understanding the transport behaviors of thallium (Tl) in porous media is of considerable interest for both natural soils and artificial filtration removal of Tl. In this context, the transport behaviors of Tl(I) in water-saturated sand columns under different conditions were systematically investigated. It was found that, in addition to the effects of pH and ionic strength (IS), the transport of Tl(I) depended on the carbonate, phosphate and macromolecular organic matter as well. Tl(I) broken the columns more difficultly under higher pH and lower IS conditions. Moreover, the adsorption of carbonate and phosphate on sand surfaces may increase the retention of Tl(I) in columns. As for macromolecular organic matter, humic acid (HA) facilitated Tl(I) transport, especially under neutral and alkaline conditions (7.0 and 9.8), which was possibly associated with Tl-complexes formation and competed adsorption between Tl(I) and HA. However, bovine serum albumin (BSA) impeded Tl(I) transport for the reason that deposited BSA might provide more adsorption sites for Tl(I), though Tl(I) had a slight effect on BSA transport. In order to evaluate the mechanisms of transport, a dual-sites non-equilibrium model was applied to fit the breakthrough curves of Tl(I). Retardation factor (R) values of individual Tl(I) transport from model calculations were found to be higher than that of Tl(I) transport with HA and lower than that of Tl(I) transport with BSA. The fraction of instantaneous sorption sites (β) was found to decrease with increasing pH, implying nonequilibrium sorption is a main sorption mechanism of Tl(I) with pH increasing. The fundamental data obtained herein demonstrated that carbonate, phosphate and macromolecular organic matter significantly influenced the Tl(I) migration and could lead to the leaking or bindings of Tl(I) at Tl-occurring sites.
Collapse
Affiliation(s)
- Hainan Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Juchao Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Jinni Yao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Xuebin Hu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Yao Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Yijie Zou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Jiaming Xiong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, China.
| |
Collapse
|
7
|
Xu H, Luo Y, Wang P, Zhu J, Yang Z, Liu Z. Removal of thallium in water/wastewater: A review. WATER RESEARCH 2019; 165:114981. [PMID: 31446296 DOI: 10.1016/j.watres.2019.114981] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The frequent occurrence of thallium (Tl) in surface water has led to the imposition of strict environmental regulations. The need for an overview of effective and feasible technology to remove Tl from water/wastewater has therefore become urgently. This review introduced the current available methods for Tl removal, including adsorption, oxidation-reduction precipitation, solvent extraction and ion exchange processes, and summarized their advantages and disadvantages. The results showed that a single treatment technology was difficult to remove Tl to a trace level of "μg L-1", which required combined multi-technology to enhance the removal efficiency. In addition, the potential emergency and feasible technologies for Tl removal were recommended. However, several fundamental issues, such as the comparative toxicity of Tl(I) and Tl(III), the confliction of hydrolysis constants, the interference of complexant ligands as well as the influence of redox potential, were still needed to be addressed, since they would profoundly affect the selection of adopted treatment methods and the behavior of Tl removal. Future research efforts concerning the improvement of existing Tl removal technologies should be devoted to (a) developing multi-functional chemicals and adsorbents, non-toxic extractants, easy-recovery ion exchange resin and high-efficient coupling technology for advanced treatment, (b) carrying out large-scale experiments and economic assessment for real wastewater, and (c) providing safe-disposal treatment for the exhausted adsorption materials or sludge.
Collapse
Affiliation(s)
- Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yuanling Luo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Changsha Environmental Protection College, Changsha, 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zhiming Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
8
|
Hussain MM, Asiri AM, Arshad MN, Rahman MM. A Thallium Ion Sensor Development Based on the Synthesized (E)‐N′‐(Methoxybenzylidene)‐4‐ Methylbenzenesulfonohydrazide Derivatives: Environmental Sample Analysis. ChemistrySelect 2019. [DOI: 10.1002/slct.201902193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Department of PharmacyFaculty of Life and Earth SciencesJagannath University Dhaka- 1100, Bangladesh
| | - Abdullah M. Asiri
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Muhammad Nadeem Arshad
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
9
|
Chen M, Wu P, Li S, Yang S, Lin Z, Dang Z. The effects of interaction between vermiculite and manganese dioxide on the environmental geochemical process of thallium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:903-910. [PMID: 30970457 DOI: 10.1016/j.scitotenv.2019.03.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 03/06/2019] [Indexed: 05/26/2023]
Abstract
The interaction among various soil minerals can significantly impact on the environmental geochemical process of contaminants. Therefore, this study investigated the effects of interaction between vermiculite (VER) and manganese dioxide (MnO2) on the migration and transformation of Tl(I). The VER exhibited typical layered structure and MnO2 possessed a flower-like structure with serious reunion phenomenon, while the production of interaction between vermiculite and manganese dioxide, labeled VER-MnO2, illustrated as fish scales evenly spread over a large sheet, suggesting that MnO2 could triumphantly be anchored on the VER and the aggregation of MnO2 was prevented. Compared with the pure MnO2, VER acted as template substrate contributed the higher specific surface area (298.18 m2·g-1) and the oxidation degree of Mn. VER-MnO2 showed the highest fixation capacity (144.29 mg·g-1) than other two materials in the order VER-MnO2 > MnO2 > VER, and there was no risk derived from Mn dissolution. The influence mechanism of VER-MnO2 on Tl(I) migration and transformation lied in immobilization, ion exchange and oxidization. Fixed-bed column immobilization experiments showed that VER-MnO2 could purify drinking water contaminated by Tl (20 μg·L-1) and the effective breakthrough volumes were 900 bed volumes until reaching the maximum limits allowed in drinking water (0.1 μg·L-1). VER-MnO2 excellently catches Tl to prevent groundwater pollution. This study provides a theoretical guidance for environmental fate and restoration of soil heavy metal pollution.
Collapse
Affiliation(s)
- Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| | - Shuaishuai Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Shanshan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Improved decolorization of dye wastewater in an electrochemical system powered by microbial fuel cells and intensified by micro-electrolysis. Bioelectrochemistry 2018; 124:112-118. [DOI: 10.1016/j.bioelechem.2018.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022]
|
11
|
Kenova TA, Kornienko GV, Golubtsova OA, Kornienko VL, Maksimov NG. Electrochemical degradation of Mordant Blue 13 azo dye using boron-doped diamond and dimensionally stable anodes: influence of experimental parameters and water matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30425-30440. [PMID: 30159847 DOI: 10.1007/s11356-018-2977-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
In this work, the electrooxidation as environmentally clean technology has been studied to the degradation of Mordant Blue 13 azo dye (MB13) using boron-doped diamond (p-Si/BDD) and oxide ruthenium titanium (Ti/Ru0.3Ti0.7O2 (DSA)) anodes in various water matrices: distilled water (DW), hot tap water (HTW), and simulated wastewaters with (SWS) and without surfactant (SW). The influence of experimental parameters, such as current density, initial dye concentration, electrolysis time/specific charge, and pH on the MB13 degradation rate, current efficiency, and energy consumption, has been determined. The enhanced rate of both color and chemical oxygen demand (COD) removal in sulfate aqueous solutions with BDD was observed, which indicates that sulfate (SO4-•) radicals along with •OH ones might be responsible for the degradation process. The MB13 decolorization process obeyed a pseudo-first-order reaction kinetics with the apparent rate constant from 7.36 × 10-2 min-1 to 4.39 × 10-1 min-1 for BDD and from 9.2 × 10-3 min-1 to 2.11 × 10-2 min-1 for DSA depending on the electrolysis conditions. The effect of water matrix on the decolorization and COD removal efficiency has been evaluated. Inorganic ions, mordant salt, and surfactant contained in simulated effluents decelerated the COD decay compared to DW and HTW for the both anodes; meanwhile, they differently affected the discoloration process. A comparison of the specific energy consumption for each electrocatalytic material under different experiment conditions has been made. The BDD electrode was more efficient than the DSA to oxidize the MB13 dye in all kinds of water.
Collapse
Affiliation(s)
- Tatyana A Kenova
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, Russia, 660036.
| | - Galina V Kornienko
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, Russia, 660036
- M.F. Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia, 660037
| | - Oksana A Golubtsova
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, Russia, 660036
- M.F. Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia, 660037
| | - Vasiliy L Kornienko
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, Russia, 660036
| | - Nikolay G Maksimov
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, Russia, 660036
| |
Collapse
|
12
|
Xing X, Ni J, Zhu X, Jiang Y, Xia J. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO 2-Sb/PbO 2, and Ti/SnO 2-Sb anodes. CHEMOSPHERE 2018; 205:361-368. [PMID: 29704843 DOI: 10.1016/j.chemosphere.2018.04.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO2-Sb/PbO2 (PbO2), and Ti/SnO2-Sb (SnO2) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO2 anode and 9% at the SnO2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD-1) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications.
Collapse
Affiliation(s)
- Xuan Xing
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China.
| | - Jinren Ni
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Xiuping Zhu
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianxin Xia
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| |
Collapse
|
13
|
Shi J, Zhang B, Liang S, Li J, Wang Z. Simultaneous decolorization and desalination of dye wastewater through electrochemical process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8455-8464. [PMID: 29307069 DOI: 10.1007/s11356-017-1159-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Salt-containing dye wastewater discharged from textile industries causes serious environmental problems. Simultaneous decolorization and desalination of dye wastewater in a laboratory scale electrochemical cell are realized for the first time with boron-doped diamond anode. With initial methyl orange (MO) and NaCl of 50 and 3000 mg L-1, decolorization and desalination efficiencies of 70.2 and 88.7% were achieved after 6-h treatment with applied voltage of 6 V. Increasing applied voltages resulted in the improvements of both color and salt removal, while higher MO concentrations suppressed decolorization and higher NaCl concentration accelerated desalination rate. MO dissociated into anions transferred through the anion exchange membrane into the anode compartment and reacted with the active species as ·OH, H2O2, and ClO- generated in anode compartment, leading to color removal. Component analysis confirmed the destruction of MO, with generation of low molecular weight compounds such as phenol and indole. Ions balance analysis indicated that Cl- and Na+ moved to the anode and the cathode compartments respectively through the employed membranes driven by external voltage, realizing salt removal. This study has collectively demonstrated an efficient alternative for satisfactory treatment of salt-containing dye wastewater based on electrochemical technology.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| | - Shuai Liang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Jiaxin Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Zhijun Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| |
Collapse
|