1
|
Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y. Alloy-Type Anodes for High-Performance Rechargeable Batteries. Angew Chem Int Ed Engl 2022; 61:e202206770. [PMID: 35689344 DOI: 10.1002/anie.202206770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/18/2022]
Abstract
Alloy-type anodes are one of the most promising classes of next-generation anode materials due to their ultrahigh theoretical capacity (2-10 times that of graphite). However, current alloy-type anodes have several limitations: huge volume expansion, high tendency to fracture and disintegrate, an unstable solid-electrolyte interphase (SEI) layer, and low Coulombic efficiency. Efforts to overcome these challenges are ongoing. This Review details recent progress in the research of batteries based on alloy-type anodes and discusses the direction of their future development. We conclude that improvements in structural design, the introduction of a protective interface, and the selection of suitable electrolytes are the most effective ways to improve the performance of alloy-type anodes. Furthermore, future studies should direct more attention toward analyzing their synergistic promoting effect.
Collapse
Affiliation(s)
- Manqi Peng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kyungsoo Shin
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixia Jiang
- Bureau of Major R&D Programs, Chinese Academy of Sciences, Beijing, 100864, China
| | - Ye Jin
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Ke Zeng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xiaolong Zhou
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Adv. Mater. Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
2
|
Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y. Alloy‐Type Anodes for High‐Performance Rechargeable Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manqi Peng
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Kyungsoo Shin
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lixia Jiang
- Bureau of Major R&D Programs Chinese Academy of Sciences Beijing 100864 China
| | - Ye Jin
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Ke Zeng
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Xiaolong Zhou
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Adv. Mater. Processing & Mold, Ministry of Education Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
3
|
Liu C, Tian R, Sun D, Liu H, Duan H. MOF-derived 3D hollow porous carbon/graphene composites for advanced lithium-ion battery anodes. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Ren QQ, Yu FD, Zhang SW, Yin BS, Wang ZB, Ke K. Enhanced electrochemical performance by size-dependent SEI layer reactivation of NiCo2O4 anodes for lithium ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Zhou S, Wang G, Tang W, Xiao Y, Yan K. Enhanced rate performance and high potential as well as decreased strain of LiNi0.6Co0.2Mn0.2O2 by facile fluorine modification. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|