1
|
Chakravorty A, Raghavan V. Proton conductive 2D MXene-derived potassium titanate nanoribbons fabricated electrochemical platform for trace detection of enrofloxacin. CHEMOSPHERE 2024; 366:143520. [PMID: 39393580 DOI: 10.1016/j.chemosphere.2024.143520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In recent years, due to exceptional properties like broad interlayered spacing and low working potential, MXene-derived titanate nanoribbons have been established as promising electrode materials. Herein, the electrocatalytic activity of MXene-derived potassium titanate nanoribbon was employed to develop a voltammetric sensor for the detection of enrofloxacin. The sensor's significance is to provide a sustainable solution to quantify the presence of enrofloxacin regarding food safety and environmental monitoring. Moreover, to achieve the United Nations' Sustainable Development Goals by preventing antimicrobial resistance to accomplish the One Health approach. Potassium titanate nanoribbons were synthesized using 2D Ti3C2 MXene as an active precursor material, while X-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction pattern, elemental mapping, and energy-dispersive X-ray spectroscopy were used to characterize the crystallinity, surface and layered morphology of synthesized nanoribbons. The Brunauer-Emmett-Teller (BET) technique was applied to calculate the specific surface area of the synthesized materials. The materials underwent electrochemical characterization using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Later on, the nanoribbons were fabricated on the surface of a glassy carbon electrode, and the electro-oxidative behaviour of enrofloxacin was studied by CV, DPV, square wave voltammetry (SWV) in 0.1 M phosphate buffer (optimized pH 8). The developed sensor depicts a significantly lower limit of quantification of 0.007 μM (≈2.5 μg/L), and an upper limit of quantification of 18 μM (≈6.5 mg/L) along with a limit of detection (LOD) of 0.00279, 0.00803, 0.00881 μM obtained from CV, DPV, and SWV respectively. Furthermore, the developed electrodes show a reliable selectivity to be examined in real complex matrices, i.e. marine water, river water, agricultural soil, organic fertilizer, milk, honey, and poultry egg.
Collapse
Affiliation(s)
- Arghya Chakravorty
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India
| | - Vimala Raghavan
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Pierpaoli M, Jakóbczyk P, Ficek M, Dec B, Ryl J, Rutkowski B, Lewkowicz A, Bogdanowicz R. Tailoring Defects in B, N-Codoped Carbon Nanowalls for Direct Electrochemical Oxidation of Glyphosate and its Metabolites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36784-36795. [PMID: 38967626 PMCID: PMC11261608 DOI: 10.1021/acsami.4c04478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Tailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise control and tuning of the defect size, position, and density remain challenging; moreover, due to their characteristic labyrinthine morphology, conventional characterization techniques and widely accepted quality indicators fail or need to be reformulated. This study primarily focuses on examining the impact of boron heterodoping and argon plasma treatment on CNW structures, uncovering complex interplays between specific defect-induced three-dimensional nanostructures and electrochemical performance. Moreover, the study introduces the use of defect-rich CNWs as a label-free electrode for directly oxidizing glyphosate (GLY), a common herbicide, and its metabolites (sarcosine and aminomethylphosphonic acid) for the first time. Crucially, we discovered that the presence of specific boron bonds (BC and BN), coupled with the absence of Lewis-base functional groups such as pyridinic-N, is essential for the oxidation of these analytes. Notably, the D+D* second-order combinational Raman modes at ≈2570 cm-1 emerged as a reliable indicator of the analytes' affinity. Contrary to expectations, the electrochemically active surface area and the presence of oxygen-containing functional groups played a secondary role. Argon-plasma post-treatment was found to adversely affect both the morphology and surface chemistry of CNWs, leading to an increase in sp3-hybridized carbon, the introduction of oxygen, and alterations in the types of nitrogen functional groups. Simulations support that certain defects are functional for GLY rather than AMPA. Sarcosine oxidation is the least affected by defect type.
Collapse
Affiliation(s)
- Mattia Pierpaoli
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Paweł Jakóbczyk
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Mateusz Ficek
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Bartłomiej Dec
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Jacek Ryl
- Institute
of Nanotechnology and Materials Engineering, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Bogdan Rutkowski
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, A. Mickiewicza 30, Krakow 30-059, Poland
| | - Aneta Lewkowicz
- Faculty
of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, Gdańsk 80-308, Poland
| | - Robert Bogdanowicz
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| |
Collapse
|
3
|
Molina-Serrano A, Luque-Centeno JM, Sebastián D, Arenas LF, Turek T, Vela I, Carrasco-Marín F, Lázaro MJ, Alegre C. Comparison of the Influence of Oxygen Groups Introduced by Graphene Oxide on the Activity of Carbon Felt in Vanadium and Anthraquinone Flow Batteries. ACS APPLIED ENERGY MATERIALS 2024; 7:2779-2790. [PMID: 38606034 PMCID: PMC11005476 DOI: 10.1021/acsaem.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 04/13/2024]
Abstract
An increasing number of studies focus on organic flow batteries (OFBs) as possible substitutes for the vanadium flow battery (VFB), featuring anthraquinone derivatives, such as anthraquinone-2,7-disulfonic acid (2,7-AQDS). VFBs have been postulated as a promising energy storage technology. However, the fluctuating cost of vanadium minerals and risky supply chains have hampered their implementation, while OFBs could be prepared from renewable raw materials. A critical component of flow batteries is the electrode material, which can determine the power density and energy efficiency. Yet, and in contrast to VFBs, studies on electrodes tailored for OFBs are scarce. Hence, in this work, we propose the modification of commercial carbon felts with reduced graphene oxide (rGO) and poly(ethylene glycol) for the 2,7-AQDS redox couple and to preliminarily assess its effects on the efficiency of a 2,7-AQDS/ferrocyanide flow battery. Results are compared to those of a VFB to evaluate if the benefits of the modification are transferable to OFBs. The modification of carbon felts with surface oxygen groups introduced by the presence of rGO enhanced both its hydrophilicity and surface area, favoring the catalytic activity toward VFB and OFB reactions. The results are promising, given the improved behavior of the modified electrodes. Parallels are established between the electrodes of both FB technologies.
Collapse
Affiliation(s)
- Antonio
J. Molina-Serrano
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - José M. Luque-Centeno
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - David Sebastián
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Luis F. Arenas
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Thomas Turek
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Irene Vela
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | | | - María J. Lázaro
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Cinthia Alegre
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| |
Collapse
|
4
|
Yan J, Cheng Q, Liu H, Wang L, Yu K. Sensitive and rapid detection of influenza A virus for disease surveillance using dual-probe electrochemical biosensor. Bioelectrochemistry 2023; 153:108497. [PMID: 37393678 DOI: 10.1016/j.bioelechem.2023.108497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Influenza A virus (IAV) can cause influenza, a highly infectious zoonotic respiratory disease, and early detection is essential to prevent and control its rapid spread in the population. Given the limitations of traditional detection methods in clinical laboratories, we report a large surface TPB-DVA COFs (TPB: 1,3,5-Tris(4-aminophenyl) benzene, DVA: 1,4-Benzenedicarboxaldehyd, COFs: Covalent organic frameworks) nanomaterial modified electrochemical DNA biosensor, which has dual-probe specific recognition and signal amplification. The biosensor enables quantitative detection of influenza A viruses' complementary DNA (cDNA) from 10 fM to 1 × 103 nM (LOD = 5.42 fM) with good specificity and high selectivity. The reliability of the biosensor and portable device was verified by comparing the virus concentrations in animal tissues with those measured by digital droplet PCR (ddPCR) (P > 0.05). Moreover, the potential for influenza surveillance in this work was demonstrated by detecting the tissue samples from mice at different stages of infection. In summary, the good performance of this electrochemical DNA biosensor we proposed suggested it has the potential to be a rapid detection device for the influenza A virus, which could assist doctors or other professionals in obtaining rapid and accurate results for outbreak investigation and disease diagnosis.
Collapse
Affiliation(s)
- Jianhua Yan
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Qian Cheng
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
5
|
Patil JJ, Wan CTC, Gong S, Chiang YM, Brushett FR, Grossman JC. Bayesian-Optimization-Assisted Laser Reduction of Poly(acrylonitrile) for Electrochemical Applications. ACS NANO 2023; 17:4999-5013. [PMID: 36812031 DOI: 10.1021/acsnano.2c12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Laser reduction of polymers has recently been explored to rapidly and inexpensively synthesize high-quality graphitic and carbonaceous materials. However, in past work, laser-induced graphene has been restricted to semiaromatic polymers and graphene oxide; in particular, poly(acrylonitrile) (PAN) is claimed to be a polymer that cannot be laser-reduced successfully to form electrochemically active material. In this work, three strategies to surmount this barrier are employed: (1) thermal stabilization of PAN to increase its sp2 content for improved laser processability, (2) prelaser treatment microstructuring to reduce the effects of thermal stresses, and (3) Bayesian optimization to search the parameter space of laser processing to improve performance and discover morphologies. Based on these approaches, we successfully synthesize laser-reduced PAN with a low sheet resistance (6.5 Ω sq-1) in a single lasing step. The resulting materials are tested electrochemically, and their applicability as membrane electrodes for vanadium redox flow batteries is demonstrated. This work demonstrates electrodes that are processed in air, below 300 °C, which are cycled stably over 2 weeks at 40 mA cm-2, motivating further development of laser reduction of porous polymers for membrane electrode applications such as RFBs.
Collapse
|
6
|
Wan CTC, Ismail A, Quinn AH, Chiang YM, Brushett FR. Synthesis and Characterization of Dense Carbon Films as Model Surfaces to Estimate Electron Transfer Kinetics on Redox Flow Battery Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1198-1214. [PMID: 36607828 DOI: 10.1021/acs.langmuir.2c03003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Redox flow batteries (RFBs) are a promising electrochemical technology for the efficient and reliable delivery of electricity, providing opportunities to integrate intermittent renewable resources and to support unreliable and/or aging grid infrastructure. Within the RFB, porous carbonaceous electrodes facilitate the electrochemical reactions, distribute the flowing electrolyte, and conduct electrons. Understanding electrode reaction kinetics is crucial for improving RFB performance and lowering costs. However, assessing reaction kinetics on porous electrodes is challenging as their complex structure frustrates canonical electroanalytical techniques used to quantify performance descriptors. Here, we outline a strategy to estimate electron transfer kinetics on planar electrode materials of similar surface chemistry to those used in RFBs. First, we describe a bottom-up synthetic process to produce flat, dense carbon films to enable the evaluation of electron transfer kinetics using traditional electrochemical approaches. Next, we characterize the physicochemical properties of the films using a suite of spectroscopic methods, confirming that their surface characteristics align with those of widely used porous electrodes. Last, we study the electrochemical performance of the films in a custom-designed cell architecture, extracting intrinsic heterogeneous kinetic rate constants for two iron-based redox couples in aqueous electrolytes using standard electrochemical methods (i.e., cyclic voltammetry, electrochemical impedance, and spectroscopy). We anticipate that the synthetic methods and experimental protocols described here are applicable to a range of electrocatalysts and redox couples.
Collapse
Affiliation(s)
- Charles Tai-Chieh Wan
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Akram Ismail
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| | - Alexander H Quinn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Yet-Ming Chiang
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Fikile R Brushett
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
7
|
Han JH, Hwang S, Hyub Kim J. Electrochemical impedance spectroscopy analysis of plasma-treated, spray-coated single-walled carbon-nanotube film electrodes for chemical and electrochemical devices. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Atchabarova A, Abdimomyn S, Abduakhytova D, Zhigalenok Y, Tokpayev R, Kishibayev K, Khavaza T, Kurbatov A, Zlobina Y, Djenizian T. Role of carbon material surface functional groups on their interactions with aqueous solutions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Ma Q, Gao J, Potts C, Tong X, Tao Y, Zhang W. Electrochemical Aging and Halogen Oxides Formation on Multiwalled Carbon Nanotubes and Fe 3O 4@g-C 3N 4 Coated Conductive Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingquan Ma
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Jianan Gao
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Courtney Potts
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
10
|
Tripathi AK, Priyadarshani D, Joy ME, Maurya R, Neergat M. The impact of overpotential on the enthalpy of activation and pre-exponential factor of electrochemical redox reactions. Phys Chem Chem Phys 2022; 24:16031-16040. [PMID: 35730802 DOI: 10.1039/d2cp00404f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics of the V5+/V4+ redox reaction is investigated in a three-electrode configuration on a Vulcan XC-72 modified glassy carbon rotating disk electrode at four different temperatures (25 to 40 °C, with 5 °C interval). The values of enthalpy of activation (ΔH#) and pre-exponential factor (Af) estimated using the Eyring equation are in the range of 0.25-0.53 eV (24-51 kJ mol-1) and -1.3 to 5, respectively. The Eyring plots tend to diverge with overpotential, causing an increase in the values of the estimated ΔH# and Af. This is perhaps due to the retarding effect of the precipitates/adsorbates on the electrode surface. The investigation of the kinetics suggests that the V5+/V4+ redox reaction is electrocatalysed through an increase in the entropy of activation (ΔS#).
Collapse
Affiliation(s)
- Anand Kumar Tripathi
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Divya Priyadarshani
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Miji E Joy
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Rajan Maurya
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manoj Neergat
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
11
|
Zhang S, Chen K, Zhu L, Xu M, Song Y, Zhang Z, Du M. Direct growth of two-dimensional phthalocyanine-based COF on Cu-MOF to construct a photoelectrochemical-electrochemical dual-mode biosensing platform for high-efficiency determination of Cr(III). Dalton Trans 2021; 50:14285-14295. [PMID: 34553722 DOI: 10.1039/d1dt02710g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoelectrochemical (PEC)-electrochemical (EC) dual-mode biosensing strategy based on COF@MOF heterostructure was developed for efficiently analyzing Cr(III) ions. A two-dimensional phthalocyanine-based COF (CoPc-PT-COF) was in situ grown on a Cu-based MOF (Cu-MOF) substrate via covalent binding between carboxyl groups in Cu-MOF and amino groups in CoPc-PT-COF (denoted as CoPc-PT-COF@Cu-MOF). The coexistence of both phthalocyanine and bipyridine in CoPc-PT-COF@Cu-MOF affords the outperformed electro- and photo-activities, thus serving as a photoelectric beacon with favorable energy-band configuration and amplified electrochemical response. Due to the high porosity and rich functionality of the obtained heterostructure, the DNA strands can be tightly anchored over CoPc-PT-COF@Cu-MOF via diverse interactions. Thanks to the specific recognition between DNA strands and Cr3+ ions, the CoPc-PT-COF@Cu-MOF-based biosensor can be used to determine Cr3+ ions in an aqueous environment by PEC-EC mode. The gained biosensor shows an extremely low limit of detection (LOD) of 14.5 fM (for PEC) and 22.9 fM (for EC) within the Cr3+ concentration range from 0.1 pM to 100 nM, along with high selectivity, good reproducibility and stability. Moreover, this novel biosensor exhibits acceptable applicability for analyzing the trace Cr3+ from diverse samples (e.g., river and tap water). As a result, this work provides new insights into the construction of a high-efficiency PEC-EC dual-mode biosensor for detecting heavy metal ions from complex environments.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Lei Zhu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Miaoran Xu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Yingpan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| |
Collapse
|
12
|
Radinger H. 2021: A Surface Odyssey. Role of Oxygen Functional Groups on Activated Carbon-Based Electrodes in Vanadium Flow Batteries. Chemphyschem 2021; 22:2498-2505. [PMID: 34643328 PMCID: PMC9297873 DOI: 10.1002/cphc.202100623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Indexed: 11/24/2022]
Abstract
The market breakthrough of vanadium flow batteries is hampered by their low power density, which depends heavily on the catalytic activity of the graphite‐based electrodes used. Researchers try to increase their performance by thermal, chemical, or electrochemical treatments but find no common activity descriptors. No consistent results exist for the so‐called oxygen functional groups, which seem to catalyze mainly the VIII/VII but rarely the VVO2+/VIVO2+ redox reaction. Some studies suggest that the activity is related to graphitic lattice defects which often contain oxygen and are therefore held responsible for inconsistent conclusions. Activation of electrodes does not change one property at a time, but rather surface chemistry and microstructure simultaneously, and the choice of starting material is crucial for subsequent observations. In this contribution, the literature on the catalytic and physicochemical properties of activated carbon‐based electrodes is analyzed and evaluated. In addition, an outlook on possible future investigations is given to avoid the propagation of contradictions.
Collapse
Affiliation(s)
- Hannes Radinger
- Institute for Applied Materials, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Gomez CG, Linarez Pérez OE, Avalle LB, Rojas MI. Morphological and electrochemical characterizations of a carbon nitride/highly oriented pyrolytic graphite electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Tran VV, Nguyen DD, Hofmann M, Hsieh YP, Kan HC, Hsu CC. Edge-Rich Interconnected Graphene Mesh Electrode with High Electrochemical Reactivity Applicable for Glucose Detection. NANOMATERIALS 2021; 11:nano11020511. [PMID: 33671450 PMCID: PMC7922656 DOI: 10.3390/nano11020511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
The development of graphene structures with controlled edges is greatly desired for understanding heterogeneous electrochemical (EC) transfer and boosting EC applications of graphene-based electrodes. We herein report a facile, scalable, and robust method to produce graphene mesh (GM) electrodes with tailorable edge lengths. Specifically, the GMs were fabricated at 850 °C under a vacuum level of 0.6 Pa using catalytic nickel templates obtained based on a crack lithography. As the edge lengths of the GM electrodes increased from 5.48 to 24.04 m, their electron transfer rates linearly increased from 0.08 to 0.16 cm∙s−1, which are considerably greater than that (0.056 ± 0.007 cm∙s−1) of basal graphene structures (defined as zero edge length electrodes). To illustrate the EC sensing potentiality of the GM, a high-sensitivity glucose detection was conducted on the graphene/Ni hybrid mesh with the longest edge length. At a detection potential of 0.6 V, the edge-rich graphene/Ni hybrid mesh sensor exhibited a wide linear response range from 10.0 μM to 2.5 mM with a limit of detection of 1.8 μM and a high sensitivity of 1118.9 μA∙mM−1∙cm−2. Our findings suggest that edge-rich GMs can be valuable platforms in various graphene applications such as graphene-based EC sensors with controlled and improved performance.
Collapse
Affiliation(s)
- Van Viet Tran
- Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan; (V.V.T.); (D.D.N.); (H.-C.K.)
| | - Duc Dung Nguyen
- Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan; (V.V.T.); (D.D.N.); (H.-C.K.)
- Center for High Technology Development, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan;
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan;
| | - Hung-Chih Kan
- Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan; (V.V.T.); (D.D.N.); (H.-C.K.)
| | - Chia-Chen Hsu
- Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan; (V.V.T.); (D.D.N.); (H.-C.K.)
- Correspondence: ; Tel.: +886-5-272-0411 (ext. 66305)
| |
Collapse
|
15
|
Kroner I, Becker M, Turek T. Determination of Rate Constants and Reaction Orders of Vanadium‐Ion Kinetics on Carbon Fiber Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202001033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Isabelle Kroner
- Research Center Energy Storage Technologies Clausthal University of Technology Am Stollen 19A 38640 Goslar Germany
- Institute of Chemical and Electrochemical Process Engineering Clausthal University of Technology Leibnizstraße 17 38678 Clausthal-Zellerfeld Germany
| | - Maik Becker
- Research Center Energy Storage Technologies Clausthal University of Technology Am Stollen 19A 38640 Goslar Germany
| | - Thomas Turek
- Research Center Energy Storage Technologies Clausthal University of Technology Am Stollen 19A 38640 Goslar Germany
- Institute of Chemical and Electrochemical Process Engineering Clausthal University of Technology Leibnizstraße 17 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
16
|
Landon-Lane L, Downard AJ, Marshall AT. Single fibre electrode measurements – A versatile strategy for assessing the non-uniform kinetics at carbon felt electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Meng Y, Bai W, Zhang Y, Sun H, Li Y. Electrogenerated chemiluminescence biosensing method based on 5-hydroxymethylcytosine antibody and PDDA-CNTs nanocomposites for the determination of 5-hydroxymethylcytosine double-stranded DNA. Talanta 2020; 210:120597. [DOI: 10.1016/j.talanta.2019.120597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
|
18
|
Tichter T, Schneider J, Andrae D, Gebhard M, Roth C. Universal Algorithm for Simulating and Evaluating Cyclic Voltammetry at Macroporous Electrodes by Considering Random Arrays of Microelectrodes. Chemphyschem 2020; 21:428-441. [PMID: 31841241 PMCID: PMC7078989 DOI: 10.1002/cphc.201901113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Indexed: 11/13/2022]
Abstract
An algorithm for the simulation and evaluation of cyclic voltammetry (CV) at macroporous electrodes such as felts, foams, and layered structures is presented. By considering 1D, 2D, and 3D arrays of electrode sheets, cylindrical microelectrodes, hollow-cylindrical microelectrodes, and hollow-spherical microelectrodes the internal diffusion domains of the macroporous structures are approximated. A universal algorithm providing the time-dependent surface concentrations of the electrochemically active species, required for simulating cyclic voltammetry responses of the individual planar, cylindrical, and spherical microelectrodes, is presented as well. An essential ingredient of the algorithm, which is based on Laplace integral transformation techniques, is the use of a modified Talbot contour for the inverse Laplace transformation. It is demonstrated that first-order homogeneous chemical kinetics preceding and/or following the electrochemical reaction and electrochemically active species with non-equal diffusion coefficients can be included in all diffusion models as well. The proposed theory is supported by experimental data acquired for a reference reaction, the oxidation of [Fe(CN)6 ]4- at platinum electrodes as well as for a technically relevant reaction, the oxidation of VO2+ at carbon felt electrodes. Based on our calculation strategy, we provide a powerful open source tool for simulating and evaluating CV data implemented into a Python graphical user interface (GUI).
Collapse
Affiliation(s)
- Tim Tichter
- Freie Universität Berlin Institut für Chemie und BiochemieTakustr. 314195BerlinGermany
| | - Jonathan Schneider
- Freie Universität Berlin Institut für Chemie und BiochemieTakustr. 314195BerlinGermany
| | - Dirk Andrae
- Freie Universität Berlin Institut für Chemie und BiochemieArnimallee 2214195BerlinGermany
| | - Marcus Gebhard
- Universität Bayreuth Lehrstuhl für WerkstoffverfahrenstechnikUniversitätsstr. 3095447BayreuthGermany
| | - Christina Roth
- Universität Bayreuth Lehrstuhl für WerkstoffverfahrenstechnikUniversitätsstr. 3095447BayreuthGermany
| |
Collapse
|
19
|
Stimming U, Wang J, Bund A. The Vanadium Redox Reactions - Electrocatalysis versus Non-Electrocatalysis. Chemphyschem 2019; 20:3004-3009. [PMID: 31670890 DOI: 10.1002/cphc.201900861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Indexed: 11/07/2022]
Abstract
Catalytic effects of surface groups on porous carbon electrodes are claimed in literature for the redox reactions V(II)/V(III) and V(IV)/V(V). The literature is critically analysed also in relation to work of this group. A method how to overcome the problem of assessing the electrochemically active surface area on porous electrodes is presented. Applying this method, no catalytic effects for above reactions can be substantiated. It is further pointed out that the parameters electrochemical potential and temperature need to be used to assess electrocatalysis.
Collapse
Affiliation(s)
- Ulrich Stimming
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.,North East Centre for Energy Materials (NECEM), Newcastle upon Tyne, NE1 7RU, United Kingdom.,Department of Physics, Technische Universität München, 80333, Munich, Germany
| | - Jiabin Wang
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Andreas Bund
- Electrochemistry and Electroplating Group, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| |
Collapse
|
20
|
Cazot M, Maranzana G, Dillet J, Beille F, Godet-Bar T, Didierjean S. Symmetric-cell characterization of the redox flow battery system: Application to the detection of degradations. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Deen K, Asselin E. On the use of a naturally-sourced CuFeS2 mineral concentrate for energy storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Degradation Phenomena of Bismuth-Modified Felt Electrodes in VRFB Studied by Electrochemical Impedance Spectroscopy. BATTERIES-BASEL 2019. [DOI: 10.3390/batteries5010016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The performance of all-V redox flow batteries (VRFB) will decrease when they are exposed to dynamic electrochemical cycling, but also when they are in prolonged contact with the acidic electrolyte. These phenomena are especially severe at the negative side, where the parasitic hydrogen evolution reaction (HER) will be increasingly favored over the reduction of V(III) with ongoing degradation of the carbon felt electrode. Bismuth, either added to the electrolyte or deposited onto the felt, has been reported to suppress the HER and therefore to enhance the kinetics of the V(II)/V(III) redox reaction. This study is the first to investigate degradation effects on bismuth-modified electrodes in the negative half-cell of a VRFB. By means of a simple impregnation method, a commercially available carbon felt was decorated with Bi 2 O 3 , which is supposedly present as Bi(0) under the working conditions at the negative side. Modified and unmodified felts were characterized electrochemically using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a three-electrode setup. Surface morphology of the electrodes and composition of the negative half-cell electrolyte were probed using scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (TXRF), respectively. This was done before and after the electrodes were subjected to 50 charge-discharge cycles in a battery test bench. Our results suggest that not only the bismuth catalyst is dissolved from the electrode during battery operation, but also that the presence of bismuth in the system has a strong accelerating effect on electrode degradation.
Collapse
|
23
|
Chakraborty A, Bera B, Priyadarshani D, Leuaa P, Choudhury D, Neergat M. Electrochemical estimation of active site density on a metal-free carbon-based catalyst. RSC Adv 2018; 9:466-475. [PMID: 35521624 PMCID: PMC9059300 DOI: 10.1039/c8ra08906j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022] Open
Abstract
Nitrogen-doped carbon is synthesized by the heat-treatment of carbon in an ammoniacal atmosphere at different temperatures. The active site density and electrochemically active surface area (ESA) of carbon and nitrogen-doped carbon catalysts are estimated from the charge due to oxidation of the adsorbed anthraquinone-2-sulfonate (AQS) probe molecule. In the potential window of interest and over a range of concentrations, there is no unwanted side reaction or polymerization of the probe molecule that interferes with the electrochemical estimation of active site density. Most importantly, the adsorbed AQS can easily be removed from the electrode surface by potential cycling. The ORR activity and active site density of the catalysts derived from AQS-adsorption have similar trends. The active site density and turnover frequency towards ORR estimated using the AQS-adsorption method are in line with those reported in the literature by other methods. On the other hand, the results show that the wetted surface area estimated from the double layer capacitance does not always correlate with catalytic activity.
Collapse
Affiliation(s)
- Arup Chakraborty
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay (IITB) Powai Mumbai-400076 India + 91 22 2576 4890 + 91 22 2576 7893
| | - Bapi Bera
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay (IITB) Powai Mumbai-400076 India + 91 22 2576 4890 + 91 22 2576 7893
| | - Divya Priyadarshani
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay (IITB) Powai Mumbai-400076 India
| | - Pradipkumar Leuaa
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay (IITB) Powai Mumbai-400076 India + 91 22 2576 4890 + 91 22 2576 7893
| | - Debittree Choudhury
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay (IITB) Powai Mumbai-400076 India + 91 22 2576 4890 + 91 22 2576 7893
| | - Manoj Neergat
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay (IITB) Powai Mumbai-400076 India + 91 22 2576 4890 + 91 22 2576 7893
| |
Collapse
|
24
|
Hui J, Gossage ZT, Sarbapalli D, Hernández-Burgos K, Rodríguez-López J. Advanced Electrochemical Analysis for Energy Storage Interfaces. Anal Chem 2018; 91:60-83. [PMID: 30428255 DOI: 10.1021/acs.analchem.8b05115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jingshu Hui
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Zachary T Gossage
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Dipobrato Sarbapalli
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , 1304 West Green Street , Urbana , Illinois 61801 , United States
| | - Kenneth Hernández-Burgos
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , 405 North Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Joaquín Rodríguez-López
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , 405 North Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
25
|
Effect of Operating Temperature on Individual Half-Cell Reactions in All-Vanadium Redox Flow Batteries. BATTERIES-BASEL 2018. [DOI: 10.3390/batteries4040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Systematic steady-state measurements were performed in order to investigate the effect of operating temperature on the individual half-cell reactions in all vanadium redox flow cells. Results confirm that the kinetic losses are dominated by the negative half-cell reaction. Steady-state polarization and AC impedance measurements allowed for extraction of kinetic parameters (exchange current densities, activation energy) of the corresponding half-cell reaction.
Collapse
|
26
|
The reduction reaction kinetics of vanadium(V) in acidic solutions on a platinum electrode with unusual difference compared to carbon electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Anion effects on the redox kinetics of positive electrolyte of the all-vanadium redox flow battery. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.10.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Fetyan A, El-Nagar GA, Derr I, Kubella P, Dau H, Roth C. A neodymium oxide nanoparticle-doped carbon felt as promising electrode for vanadium redox flow batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.104] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Synergistic effect of iron diselenide decorated multi-walled carbon nanotubes for enhanced heterogeneous electron transfer and electrochemical hydrogen evolution. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Friedl J, Lebedeva MA, Porfyrakis K, Stimming U, Chamberlain TW. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries. J Am Chem Soc 2017; 140:401-405. [DOI: 10.1021/jacs.7b11041] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jochen Friedl
- Chemistry - School
of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Maria A. Lebedeva
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, U.K
| | - Kyriakos Porfyrakis
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, U.K
| | - Ulrich Stimming
- Chemistry - School
of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Thomas W. Chamberlain
- Institute of Process
Research and Development, School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
31
|
Chan HT, Kätelhön E, Compton RG. Voltammetry at electrodes decorated with an insulating porous film: Understanding the effects of adsorption. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Derr I, Przyrembel D, Schweer J, Fetyan A, Langner J, Melke J, Weinelt M, Roth C. Electroless chemical aging of carbon felt electrodes for the all-vanadium redox flow battery (VRFB) investigated by Electrochemical Impedance and X-ray Photoelectron Spectroscopy. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Chakraborty A, Devivaraprasad R, Bera B, Neergat M. Electrochemical estimation of the active site density on metal-free nitrogen-doped carbon using catechol as an adsorbate. Phys Chem Chem Phys 2017; 19:25414-25422. [DOI: 10.1039/c7cp04285j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical method to estimate the active site density of metal-free electrocatalysts using catechol adsorption.
Collapse
Affiliation(s)
- Arup Chakraborty
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Mumbai-400076
- India
| | - Ruttala Devivaraprasad
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Mumbai-400076
- India
| | - Bapi Bera
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Mumbai-400076
- India
| | - Manoj Neergat
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Mumbai-400076
- India
| |
Collapse
|