1
|
Wang C, Wang Y, Sun W, Huang D, Lin S, Wang L, Zeng H. Electricity-driven dealkalization of bauxite residue based on thermodynamics, kinetics, and mineral transformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45747-45760. [PMID: 38977552 DOI: 10.1007/s11356-024-34100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/09/2024] [Indexed: 07/10/2024]
Abstract
High alkalinity content of bauxite residue is a major factor that hinders resource reutilization and pollutes the environment. Although acid neutralization is a direct and effective method, the amount of acid and secondary waste of sodium salt are still difficult problems to solve. Herein, we innovatively integrated an electric field into the acid neutralization dealkalization of bauxite residue and analyzed the dealkalization behavior by thermodynamics, kinetics, and mineral transformation. The results show that the pH of the anode chamber was maintained at the acidic levels of 3-6 after 30 min of galvanostatic electrolysis, and bauxite residue can realize dealkalization by acid neutralization. In the anode chamber, Na+ was released into the leachate via the reactions of Na3Al3Si3O12 and the removal of encapsulated soluble alkali. The stainless steel wire mesh anode exhibited its superiority and decreased the Na2O content in bauxite residue from 9.48 to 3.13% through convective mass transfer driven by the electric field and steady-state diffusion under stirring. This research provides a promising method for the electricity-driven dealkalization of bauxite residue, thus facilitating the development of multifield coupling theory and the application of electric fields in the alumina industry.
Collapse
Affiliation(s)
- Chengwen Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Yanxiu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China.
- , Changsha, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Dandan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Shangyong Lin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Li Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Hua Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| |
Collapse
|
2
|
Gao X, Gao M, Yu X, Jin X, Ni G, Peng J. Bifunctional Al-Doped Cobalt Ferrocyanide Nanocube Array for Energy-Saving Hydrogen Production via Urea Electrolysis. Molecules 2023; 28:7147. [PMID: 37894626 PMCID: PMC10608971 DOI: 10.3390/molecules28207147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The very slow anodic oxygen evolution reaction (OER) greatly limits the development of large-scale hydrogen production via water electrolysis. By replacing OER with an easier urea oxidation reaction (UOR), developing an HER/UOR coupling electrolysis system for hydrogen production could save a significant amount of energy and money. An Al-doped cobalt ferrocyanide (Al-Co2Fe(CN)6) nanocube array was in situ grown on nickel foam (Al-Co2Fe(CN)6/NF). Due to the unique nanocube array structure and regulated electronic structure of Al-Co2Fe(CN)6, the as-prepared Al-Co2Fe(CN)6/NF electrode exhibited outstanding catalytic activities and long-term stability to both UOR and HER. The Al-Co2Fe(CN)6/NF electrode needed potentials of 0.169 V and 1.118 V (vs. a reversible hydrogen electrode) to drive 10 mA cm-2 for HER and UOR, respectively, in alkaline conditions. Applying the Al-Co2Fe(CN)6/NF to a whole-urea electrolysis system, 10 mA cm-2 was achieved at a cell voltage of 1.357 V, which saved 11.2% electricity energy compared to that of traditional water splitting. Density functional theory calculations demonstrated that the boosted UOR activity comes from Co sites with Al-doped electronic environments. This promoted and balanced the adsorption/desorption of the main intermediates in the UOR process. This work indicates that Co-based materials as efficient catalysts have great prospects for application in urea electrolysis systems and are expected to achieve low-cost and energy-saving H2 production.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Peng
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China (G.N.)
| |
Collapse
|
3
|
Molybdenum carbide/Ni nanoparticles-incorporated carbon nanofibers as effective non-precious catalyst for urea electrooxidation reaction. Sci Rep 2022; 12:22574. [PMID: 36585465 PMCID: PMC9803659 DOI: 10.1038/s41598-022-26975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, molybdenum carbide and carbon were investigated as co-catalysts to enhance the nickel electro-activity toward urea oxidation. The proposed electrocatalyst has been formulated in the form of nanofibrous morphology to exploit the advantage of the large axial ratio. Typically, calcination of electropsun polymeric nanofibers composed of poly(vinyl alcohol), molybdenum chloride and nickel acetate under vacuum resulted in producing good morphology molybdenum carbide/Ni NPs-incorporated carbon nanofibers. Investigation on the composition and morphology of the proposed catalyst was achieved by XRD, SEM, XPS, elemental mapping and TEM analyses which concluded formation of molybdenum carbide and nickel nanoparticles embedded in a carbon nanofiber matrix. As an electrocatalyst for urea oxidation, the electrochemical measurements indicated that the proposed composite has a distinct activity when the molybdenum content is optimized. Typically, the nanofibers prepared from electrospun nanofibers containing 25 wt% molybdenum precursor with respect to nickel acetate revealed the best performance. Numerically, using 0.33 M urea in 1.0 M KOH, the obtained current densities were 15.5, 44.9, 52.6, 30.6, 87.9 and 17.6 mA/cm2 for nanofibers prepared at 850 °C from electropsun mats containing 0, 5, 10, 15, 25 and 35 molybdenum chloride, respectively. Study the synthesis temperature of the proposed composite indicated that 1000 °C is the optimum calcination temperature. Kinetic studies indicated that electrooxidation reaction of urea does not follow Arrhenius's law.
Collapse
|
4
|
Amer MS, Arunachalam P, Alsalman AM, Al-Mayouf AM, Almutairi ZA, Aladeemy SA, Hezam M. Facile synthesis of amorphous nickel iron borate grown on carbon paper as stable electrode materials for promoted electrocatalytic urea oxidation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. NANOMATERIALS 2022; 12:nano12111916. [PMID: 35683771 PMCID: PMC9182062 DOI: 10.3390/nano12111916] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022]
Abstract
Developing efficient electrocatalysts for urea oxidation reaction (UOR) can be a promising alternative strategy to substitute the sluggish oxygen evolution reaction (OER), thereby producing hydrogen at a lower cell-voltage. Herein, we synthesized a binder-free thin film of ultrathin sheets of bimetallic Cu-Fe-based metal–organic frameworks (Cu/Fe-MOFs) on a nickel foam via a drop-casting route. In addition to the scalable route, the drop-casted film-electrode demonstrates the lower UOR potentials of 1.59, 1.58, 1.54, 1.51, 1.43 and 1.37 V vs. RHE to achieve the current densities of 2500, 2000, 1000, 500, 100 and 10 mA cm−2, respectively. These UOR potentials are relatively lower than that acquired by the pristine Fe-MOF-based film-electrode synthesized via a similar route. For example, at 1.59 V vs. RHE, the Cu/Fe-MOF electrode exhibits a remarkably ultra-high anodic current density of 2500 mA cm−2, while the pristine Fe-MOF electrode exhibits only 949.10 mA cm−2. It is worth noting that the Cu/Fe-MOF electrode at this potential exhibits an OER current density of only 725 mA cm−2, which is far inconsequential as compared to the UOR current densities, implying the profound impact of the bimetallic cores of the MOFs on catalyzing UOR. In addition, the Cu/Fe-MOF electrode also exhibits a long-term electrochemical robustness during UOR.
Collapse
|
6
|
Abstract
The electrochemical urea oxidation reaction (UOR) is crucial for determining industrial and commercial applications of urea-based energy conversion devices. However, the performance of UOR is limited by the dynamic complex of the six-electron transfer process. To this end, it is essential to develop efficient UOR catalysts. Nickel-based materials have been extensively investigated owing to their high activity, easy modification, stable properties, and cheap and abundant reserves. Various material designs and strategies have been investigated in producing highly efficient UOR catalysts including alloying, doping, heterostructure construction, defect engineering, micro functionalization, conductivity modulation, etc. It is essential to promptly review the progress in this field to significantly inspire subsequent studies. In this review, we summarized a comprehensive investigation of the mechanisms of oxidation or poisoning and UOR processes on nickel-based catalysts as well as different approaches to prepare highly active catalysts. Moreover, challenges and prospects for future developments associated with issues of UOR in urea-based energy conversion applications were also discussed.
Collapse
|
7
|
Putri YMTA, Gunlazuardi J, Yulizar Y, Wibowo R, Einaga Y, Ivandini TA. Recent progress in direct urea fuel cell. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Direct urea fuel cell (DUFC) has attracted many researchers’ attention due to the use of wastewater, for example urine, which contains urea for the fuel. The main factor to improve the electrochemical oxidation performance of urea and further enhance the performances of DUFC is the use of a good anode catalyst. Non-noble metal catalyst, such as nickel, is reported to have a good catalytic activity in alkaline medium towards urea electro-oxidation. Besides optimizing the anode catalyst, the use of supporting electrode which has a large surface area as well as the use of H2O2 as an oxidant to replace O2 could help to improve the performances. The recent progress in anode catalysts for DUFC is overviewed in this article. In addition, the advantages and disadvantages as well as the factors that could help to escalate the performance of DUFC are discussed together with the challenges and future perspectives.
Collapse
Affiliation(s)
| | - Jarnuzi Gunlazuardi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok 16424 , Indonesia
| | - Yoki Yulizar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok 16424 , Indonesia
| | - Rahmat Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok 16424 , Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Sciences and Technology, Keio University , Yokohama 223-8522 , Japan
| | - Tribidasari A. Ivandini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok 16424 , Indonesia
| |
Collapse
|
8
|
Introduction of surface defects in NiO with effective removal of adsorbed catalyst poisons for improved electrochemical urea oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Yang M, Ding C, Liu Y, Bai Q. Enhanced electro-oxidation of urea using Ni-NiS debris via confinement in carbon derived from glucose. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Li J, Li J, Gong M, Peng C, Wang H, Yang X. Catalyst Design and Progresses for Urea Oxidation Electrolysis in Alkaline Media. Top Catal 2021. [DOI: 10.1007/s11244-021-01453-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Gross SJ, McDevitt KM, Mumm DR, Mohraz A. Mitigating Bubble Traffic in Gas-Evolving Electrodes via Spinodally Derived Architectures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8528-8537. [PMID: 33555849 DOI: 10.1021/acsami.0c20798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous electrodes are widely used in the industry because of their high surface area to volume ratio. However, the stochastic morphology of most commercially available porous electrodes results in poor electrical connections in the solid phase and inefficient mass transport through the pore phase. This can be especially detrimental for gas-evolving processes such as water electrolysis for hydrogen and oxygen generation. Bicontinuous interfacially jammed emulsion gels (bijels) offer templates from which to create porous electrodes with robust solid-state interconnectivity and a uniform pore structure that facilitate improved electron and mass transport. In this study, gas release rates and electrochemical experiments are utilized to study the effects of powder- and bijel-derived microstructures on hydrogen generation by water electrolysis. The bijel-derived electrodes are shown to expel product gas faster and require up to 25% less overpotential to drive water electrolysis over the range of current densities tested (-5 to -40 mA/cm2) than their powder-derived analogs. Our findings suggest that the uniform and bicontinuous domains of bijel-derived porous electrodes can mitigate the limited current distribution and deleterious bubble effect found in stochastic electrodes, in turn improving the overall performance of electrolytic processes requiring transport of gaseous species.
Collapse
Affiliation(s)
- Sierra J Gross
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Irvine, 544 Engineering Tower, Irvine, California 92697-2585, United States
| | - Kyle M McDevitt
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Irvine, 544 Engineering Tower, Irvine, California 92697-2585, United States
| | - Daniel R Mumm
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Irvine, 544 Engineering Tower, Irvine, California 92697-2585, United States
| | - Ali Mohraz
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, 916 Engineering Tower, Irvine, California 92697-2580, United States
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Irvine, 544 Engineering Tower, Irvine, California 92697-2585, United States
| |
Collapse
|
12
|
Modak A, Mohan R, Rajavelu K, Cahan R, Bendikov T, Schechter A. Metal-Organic Polymer-Derived Interconnected Fe-Ni Alloy by Carbon Nanotubes as an Advanced Design of Urea Oxidation Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8461-8473. [PMID: 33565313 DOI: 10.1021/acsami.0c22148] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The electrochemical urea oxidation reaction (UOR) is considered as a promising renewable source for harvesting energy from waste. We report a new synthetic design approach to produce an iron-nickel alloy nanocatalyst from a metal-organic polymer (MOP) by a single-step carbonization process at 500 °C, thus forming a core-shell of iron-nickel-coated carbon (C@FeNi) nanostructures wired by embedded carbon nanotubes (CNTs) (CNT/C@FeNi). Powder X-ray diffraction confirmed the formation of metallic FeNi3 alloy nanoparticles (∼20 to 28 nm). Our experimental results showed that MOP containing CNTs acquired an interconnected hierarchical topology, which prevented the collapse of its microstructure during pyrolysis. Hence, CNT/C@FeNi shows higher porosity (10 times) than C@FeNi. The electrochemical UOR in alkaline electrolytes on these catalysts was studied using cyclic voltammetry (CV). The result showed a higher anodic current (3.5 mA cm-2) for CNT/C@FeNi than for C@FeNi (1.1 mA cm-2) at 1.5 V/RHE. CNT/C@FeNi displayed good stability in chronoamperometry experiments and a lower Tafel slope (33 mV dec-1) than C@FeNi (41.1 mV dec-1). In this study, CNT/C@FeNi exhibits higher exchange current density (3.2 μA cm-2) than does C@FeNi (2 μA cm-2). The reaction rate orders of CNT/C@FeNi and C@FeNi at a kinetically controlled potential of 1.4 V/RHE were 0.5 and 0.9, respectively, higher than the 0.26 of β-Ni(OH)2, Ni/Ni(OH)2 electrodes. The electrochemical impedance result showed a lower charge-transfer resistance for CNT/C@FeNi (61 Ω·cm-2) than for C@FeNi (162 Ω·cm-2), due to faster oxidation kinetics associated with the CNT linkage. Moreover, CNT/C@FeNi exhibited a lower Tafel slope and resistance and higher heterogeneity (25.2 × 10-5 cm s-1), as well as relatively high faradic efficiency (68.4%) compared to C@FeNi (56%). Thus, the carbon-coated FeNi3 core connected by CNT facilitates lower charge-transfer resistance and reduces the UOR overpotential.
Collapse
Affiliation(s)
- Arindam Modak
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Roopathy Mohan
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | | | - Rivka Cahan
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
| | - Tatyana Bendikov
- Chemical Research Support Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alex Schechter
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
13
|
Beltrán-Suito R, Forstner V, Hausmann JN, Mebs S, Schmidt J, Zaharieva I, Laun K, Zebger I, Dau H, Menezes PW, Driess M. A soft molecular 2Fe-2As precursor approach to the synthesis of nanostructured FeAs for efficient electrocatalytic water oxidation. Chem Sci 2020; 11:11834-11842. [PMID: 34123210 PMCID: PMC8162750 DOI: 10.1039/d0sc04384b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/07/2020] [Indexed: 12/03/2022] Open
Abstract
An unprecedented molecular 2Fe-2As precursor complex was synthesized and transformed under soft reaction conditions to produce an active and long-term stable nanocrystalline FeAs material for electrocatalytic water oxidation in alkaline media. The 2Fe2As-centred β-diketiminato complex, having an unusual planar Fe2As2 core structure, results from the salt-metathesis reaction of the corresponding β-diketiminato FeIICl complex and the AsCO- (arsaethynolate) anion as the monoanionic As- source. The as-prepared FeAs phase produced from the precursor has been electrophoretically deposited on conductive electrode substrates and shown to act as a electro(pre)catalyst for the oxygen evolution reaction (OER). The deposited FeAs undergoes corrosion under the severe anodic alkaline conditions which causes extensive dissolution of As into the electrolyte forming finally an active two-line ferrihydrite phase (Fe2O3(H2O) x ). Importantly, the dissolved As in the electrolyte can be fully recaptured (electro-deposited) at the counter electrode making the complete process eco-conscious. The results represent a new and facile entry to unexplored nanostructured transition-metal arsenides and their utilization for high-performance OER electrocatalysis, which are also known to be magnificent high-temperature superconductors.
Collapse
Affiliation(s)
- Rodrigo Beltrán-Suito
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Viktoria Forstner
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - J Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Stefan Mebs
- Fachbereich Physik, Freie Universität Berlin Arnimallee 14 Berlin 14195 Germany
| | - Johannes Schmidt
- Department of Chemistry: Functional Materials, Technische Universität Berlin Hardenbergstraße 40 Berlin 10623 Germany
| | - Ivelina Zaharieva
- Fachbereich Physik, Freie Universität Berlin Arnimallee 14 Berlin 14195 Germany
| | - Konstantin Laun
- Institut für Chemie, Max-Volmar-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin Straße des 17 Juni 135 Berlin 10623 Germany
| | - Ingo Zebger
- Institut für Chemie, Max-Volmar-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin Straße des 17 Juni 135 Berlin 10623 Germany
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin Arnimallee 14 Berlin 14195 Germany
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
14
|
Abstract
Iron-nickel supported on modified active carbon (Fe-Ni/MAC) was prepared and characterized by XRD, SEM, XPS and EDS, followed by evaluating the practicability of Fe-Ni/MAC in treating real wastewater with a high concentration of phenol. Results showed that the optimal conditions for catalytic ozonation obtained by response surface methodology (RSM) were catalyst 10 g/L, ozone 68 mg/L, pH 9 and reaction time 90 min. Fe-Ni alloy and NiFe2O4 were demonstrated to be the dominant active species involved in catalytic reaction. The Fe-Ni/MAC catalyst can be reused six times with a satisfactory performance and little leaching of metal ions. Although some radicals like ·OH and ·O2− functioned well, singlet oxygen (1O2) was regarded as the most important radical in the Fe-Ni/MAC process. Most noticeably, the fluorescence excitation emission matrices (EEMs) certified that as much as 1243 mg/L phenol in the real wastewater was completely degraded, which made Fe-Ni/MAC a fairly practical catalyst.
Collapse
|
15
|
Khalafallah D, Zou Q, Zhi M, Hong Z. Tailoring hierarchical yolk-shelled nickel cobalt sulfide hollow cages with carbon tuning for asymmetric supercapacitors and efficient urea electrocatalysis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136399] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Hu X, Zhu J, Li J, Wu Q. Urea Electrooxidation: Current Development and Understanding of Ni‐Based Catalysts. ChemElectroChem 2020. [DOI: 10.1002/celc.202000404] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinrang Hu
- Department of ChemistryLishui University Lishui 323000 P R China
| | - Jiaye Zhu
- Department of ChemistryLishui University Lishui 323000 P R China
| | - Jiangfeng Li
- Department of ChemistryLishui University Lishui 323000 P R China
| | - Qingsheng Wu
- School of Chemical Science and EngineeringTongji University Shanghai 200092 P R China
| |
Collapse
|
17
|
Shi W, Sun X, Ding R, Ying D, Huang Y, Huang Y, Tan C, Jia Z, Liu E. Trimetallic NiCoMo/graphene multifunctional electrocatalysts with moderate structural/electronic effects for highly efficient alkaline urea oxidation reaction. Chem Commun (Camb) 2020; 56:6503-6506. [PMID: 32463040 DOI: 10.1039/d0cc02132f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trimetallic NiCoMo/graphene (NCM/G 811) multifunctional electrocatalysts demonstrate remarkable catalytic activity, fast kinetics, a low onset potential and high stability towards alkaline urea oxidation reaction (UOR). Moderate structural/electronic effects among Ni, Co and Mo species are responsible for the outstanding catalytic behavior.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China.
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China.
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China.
| | - Danfeng Ying
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China.
| | - Yongfa Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China.
| | - Yuxi Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China.
| | - Caini Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China.
| | - Ziyang Jia
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China.
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, P. R. China.
| |
Collapse
|
18
|
Zhu B, Liang Z, Zou R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906133. [PMID: 31913584 DOI: 10.1002/smll.201906133] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Urea oxidation reaction (UOR) is the underlying reaction that determines the performance of modern urea-based energy conversion technologies. These technologies include electrocatalytic and photoelectrochemical urea splitting for hydrogen production and direct urea fuel cells as power engines. They have demonstrated great potentials as alternatives to current water splitting and hydrogen fuel cell systems with more favorable operating conditions and cost effectiveness. At the moment, UOR performance is mainly limited by the 6-electron transfer process. In this case, various material design and synthesis strategies have recently been reported to produce highly efficient UOR catalysts. The performance of these advanced catalysts is optimized by the modification of their structural and chemical properties, including porosity development, heterostructure construction, defect engineering, surface functionalization, and electronic structure modulation. Considering the rich progress in this field, the recent advances in the design and synthesis of UOR catalysts for urea electrolysis, photoelectrochemical urea splitting, and direct urea fuel cells are reviewed here. Particular attention is paid to those design concepts, which specifically target the characteristics of urea molecules. Moreover, challenges and prospects for the future development of urea-based energy conversion technologies and corresponding catalysts are also discussed.
Collapse
Affiliation(s)
- Bingjun Zhu
- College of Space and Environment, Beihang University, Beijing, 100191, China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
19
|
Nickel-Rhodium bimetallic dispersions supported on nickel foam as the efficient catalyst for urea electrooxidation in alkaline medium. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Wang Y, Li Y, Ding L, Ding J. A facile oxidation-dehydration reaction-driven robust porous copper oxide nanobelt coating on copper foam for an energy-saving and low-cost urea oxidization reaction. Chem Commun (Camb) 2019; 55:13562-13565. [PMID: 31650997 DOI: 10.1039/c9cc07454f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We fabricated a robust porous copper oxide nanobelt coating on copper foam by a facile oxidation-dehydration reaction, which is firstly reported as a low-cost pure copper-based urea oxidization catalyst. This catalyst has enriched electrochemically active surface area, abudant nanopores and micropores for gas and electrolyte diffusion, and high conductivity from copper foam for electron transfer and herein shows superior UOR performance, outperforming noble metal catalysts or most of the as-reported nonprecious metal UOR catalysts especially at high current density.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Materials Science & Engineering, National University of, Singapore, 117575, Singapore.
| | - Yuemeng Li
- Department of Materials Science & Engineering, National University of, Singapore, 117575, Singapore.
| | - Liping Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China
| | - Jun Ding
- Department of Materials Science & Engineering, National University of, Singapore, 117575, Singapore.
| |
Collapse
|
21
|
Chen Y, Sun P, Xing W. Cobalt nitride nanoflakes supported on Ni foam as a high-performance bifunctional catalyst for hydrogen production via urea electrolysis. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1678-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Arul P, John SA. Organic solvent free in situ growth of flower like Co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Temperature effect on crystallinity and chemical states of nickel hydroxide as alternative superior catalyst for urea electrooxidation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Mirzaei P, Bastide S, Dassy A, Bensimon R, Bourgon J, Aghajani A, Zlotea C, Muller-Bouvet D, Cachet-Vivier C. Electrochemical oxidation of urea on nickel-rhodium nanoparticles/carbon composites. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.205] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Abdel Hameed R, Medany SS. Improved electrocatalytic kinetics of nickel hydroxide nanoparticles on Vulcan XC-72R carbon black towards alkaline urea oxidation reaction. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2019; 44:3636-3648. [DOI: 10.1016/j.ijhydene.2018.12.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
26
|
Facile preparation of Ni nanowire embedded nitrogen and sulfur dual-doped carbon nanofibers and its superior catalytic activity toward urea oxidation. J Colloid Interface Sci 2018; 529:337-344. [DOI: 10.1016/j.jcis.2018.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022]
|
27
|
Wang D, Liu S, Gan Q, Tian J, Isimjan TT, Yang X. Two-dimensional nickel hydroxide nanosheets with high-content of nickel(III) species towards superior urea electro-oxidation. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis. Top Curr Chem (Cham) 2018; 376:42. [PMID: 30367274 DOI: 10.1007/s41061-018-0219-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
Abstract
This paper provides an overview of recent advances in urea electro-oxidation. Urea sources are abundant from human urine, urea-containing wastewater, and industrial urea, thus becoming an attractive option as anodic fuel for the application in direct urea fuel cells (DUFCs). Besides, as a hydrogen-rich chemical fuel, urea can also be electrolyzed to produce hydrogen for energy storage in the near future. The exact mechanisms of urea decomposition are pretty different in alkaline or neutral mediums and are separately discussed in detail. More importantly, the development of anodic electro-catalysts is of great significance for improving the electrochemical performance of both DUFCs and urea electrolysis cells, which is systematically summarized in our review. Challenges and prospects on the future development of urea electro-oxidation are particularly proposed.
Collapse
|
29
|
Schranck A, Marks R, Yates E, Doudrick K. Effect of Urine Compounds on the Electrochemical Oxidation of Urea Using a Nickel Cobaltite Catalyst: An Electroanalytical and Spectroscopic Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8638-8648. [PMID: 29901992 DOI: 10.1021/acs.est.8b01743] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclic voltammetry (CV) and in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were used to investigate the effect of major urine compounds on the electro-oxidation activity of urea using a nickel cobaltite (NiCo2O4 ) catalyst. As a substrate, carbon paper exhibited better benchmark potential and current values compared with stainless steel and fluorine-doped tin oxide glass, which was attributed to its greater active surface area per electrode geometric area. CV analysis of synthetic urine showed that phosphate, creatinine, and gelatin (i.e., proteins) had the greatest negative effect on the electro-oxidation activity of urea, with decreases in peak current up to 80% compared to that of a urea-only solution. Further investigation of the binding mechanisms of the deleterious compounds using in situ ATR-FTIR spectroscopy revealed that urea and phosphate weakly bind to NiCo2O4 through hydrogen bonding or long-range forces, whereas creatinine interacts strongly, forming deactivating inner-sphere complexes. Phosphate is presumed to disrupt the interaction between urea and NiCo2O4 by serving as a hydrogen-bond acceptor in place of catalyst sites. The weak binding of urea supports the hypothesis that it is oxidized through an indirect electron transfer. Outcomes of this study contribute to the development of electrolytic systems for treating source-separated urine.
Collapse
Affiliation(s)
- Andrew Schranck
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Randal Marks
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Elon Yates
- Department of Civil and Environmental Engineering , Florida A&M , Tallahassee , Florida 32310 , United States
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
30
|
Yue Z, Yao S, Li Y, Zhu W, Zhang W, Wang R, Wang J, Huang L, Zhao D, Wang J. Surface engineering of hierarchical Ni(OH)2 nanosheet@nanowire configuration toward superior urea electrolysis. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Wu MS, Chen FY, Lai YH, Sie YJ. Electrocatalytic oxidation of urea in alkaline solution using nickel/nickel oxide nanoparticles derived from nickel-organic framework. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.10.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Abdel Hameed R, Medany SS. Enhanced electrocatalytic activity of NiO nanoparticles supported on graphite planes towards urea electro-oxidation in NaOH solution. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2017; 42:24117-24130. [DOI: 10.1016/j.ijhydene.2017.07.236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
33
|
|