1
|
Beletskii E, Pinchuk M, Snetov V, Dyachenko A, Volkov A, Savelev E, Romanovski V. Simple Solution Plasma Synthesis of Ni@NiO as High-Performance Anode Material for Lithium-Ion Batteries Application. Chempluschem 2024; 89:e202400427. [PMID: 38926095 DOI: 10.1002/cplu.202400427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Pursuing of straightforward and cost-effective methods for synthesizing high-performance anode materials for lithium-ion batteries is a topic of significant interest. This study elucidates a one-step synthesis approach for a conversion composite using glow discharge in a nickel formate solution, yielding a composite precursor comprising metallic nickel, nickel hydroxide, and basic nickel salts. Subsequent annealing of the precursor facilitated the formation of the Ni@NiO composite, exhibiting exceptional electrochemical properties as anode material in Li-ion batteries: a capacity of approximately 1000 mAh g-1, cyclic stability exceeding 100 cycles, and favorable rate performance (200 mAh g-1 at 10 A g
Collapse
Affiliation(s)
- Evgenii Beletskii
- Institute of Chemistry, St. Petersburg University, St. Petersburg, Universitetskaya Emb.7/9, 199034, Russia
| | - Mikhail Pinchuk
- Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences, Dvortsovaya Naberezhnaya 18, St. Petersburg, 191186, Russia
| | - Vadim Snetov
- Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences, Dvortsovaya Naberezhnaya 18, St. Petersburg, 191186, Russia
| | - Aleksandr Dyachenko
- Institute for Electrophysics and Electrical Power of the Russian Academy of Sciences, Dvortsovaya Naberezhnaya 18, St. Petersburg, 191186, Russia
| | - Alexey Volkov
- Institute of Chemistry, St. Petersburg University, St. Petersburg, Universitetskaya Emb.7/9, 199034, Russia
| | - Egor Savelev
- Institute of Chemistry, St. Petersburg University, St. Petersburg, Universitetskaya Emb.7/9, 199034, Russia
| | - Valentin Romanovski
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
2
|
Liu L, Huang S, Shi W, Sun X, Pang J, Lu Q, Yang Y, Xi L, Deng L, Oswald S, Yin Y, Liu L, Ma L, Schmidt OG, Shi Y, Zhang L. Single "Swiss-roll" microelectrode elucidates the critical role of iron substitution in conversion-type oxides. SCIENCE ADVANCES 2022; 8:eadd6596. [PMID: 36542707 PMCID: PMC9770940 DOI: 10.1126/sciadv.add6596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Advancing the lithium-ion battery technology requires the understanding of electrochemical processes in electrode materials with high resolution, accuracy, and sensitivity. However, most techniques today are limited by their inability to separate the complex signals from slurry-coated composite electrodes. Here, we use a three-dimensional "Swiss-roll" microtubular electrode that is incorporated into a micrometer-sized lithium battery. This on-chip platform combines various in situ characterization techniques and precisely probes the intrinsic electrochemical properties of each active material due to the removal of unnecessary binders and additives. As an example, it helps elucidate the critical role of Fe substitution in a conversion-type NiO electrode by monitoring the evolution of Fe2O3 and solid electrolyte interphase layer. The markedly enhanced electrode performances are therefore explained. Our approach exposes a hitherto unexplored route to tracking the phase, morphology, and electrochemical evolution of electrodes in real time, allowing us to reveal information that is not accessible with bulk-level characterization techniques.
Collapse
Affiliation(s)
- Lixiang Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Technische Universität Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| | - Shaozhuan Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, 430074 Wuhan, China
| | - Wujun Shi
- Center for Transformative Science, ShanghaiTech University, 201210 Shanghai, China
| | - Xiaolei Sun
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- School of Materials Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Jinbo Pang
- Institute for Complex Materials, IFW Dresden, 01069 Dresden, Germany
| | - Qiongqiong Lu
- Institute for Complex Materials, IFW Dresden, 01069 Dresden, Germany
| | - Ye Yang
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lixia Xi
- Institute for Complex Materials, IFW Dresden, 01069 Dresden, Germany
| | - Liang Deng
- Institute for Complex Materials, IFW Dresden, 01069 Dresden, Germany
| | - Steffen Oswald
- Institute for Complex Materials, IFW Dresden, 01069 Dresden, Germany
| | - Yin Yin
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Lifeng Liu
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Libo Ma
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Technische Universität Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
- Nanophysics, Faculty of Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Yumeng Shi
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Lin Zhang
- Institut für Festkörperphysik, Leibniz Universität Hannover, D-30167 Hannover, Germany
| |
Collapse
|
3
|
Dong J, Dong Y, Ren N, Zhang L, Li Y, He H, Chen C. Realizing High-Performance Lithium Storage by Fabricating FeTiO 3 Nanoparticle-Impregnated Multichannel Carbon Nanofibers with Promoted Reaction Kinetics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46513-46522. [PMID: 36200183 DOI: 10.1021/acsami.2c11738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this paper, a free-standing film of ilmenite FeTiO3 nanoparticle-impregnated porous multichannel N-doped carbon nanofibers (NF-FTO) is fabricated via electrospinning technology. The as-prepared NF-FTO film is highly flexible and can be tailored to a suitable size to assemble into lithium-ion batteries. The introduction of a conductive N-doped carbon matrix is conducive to the improvement of intrinsic electronic conductivity and the acceleration of Li+ diffusion kinetics. The construction of the porous structure and highly parallel channels facilitates the transfer of electrolyte to FTO particles through the pores and shortens the transport path of lithium ions. Thus, the self-supporting electrode yields an initial charge capacity of 718.5 mAh g-1 at 50 mA g-1, a high-rate performance of 410.4 mAh g-1 at 3 A g-1, and an outstanding cycling performance with no capacity decay after 1500 cycles at 3 A g-1. By ex situ X-ray diffraction and transmission electron microscopy analysis, the reaction mechanism of NF-FTO is determined as a reversible conversion reaction. Furthermore, the assembled LiFePO4/NF-FTO full cell delivers an initial discharge capacity of 521 mAh g-1 and superb rate performance.
Collapse
Affiliation(s)
- Jiemin Dong
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Anhui, Hefei230026, China
| | - Yu Dong
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Anhui, Hefei230026, China
| | - Naiqing Ren
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Anhui, Hefei230026, China
| | - Liming Zhang
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Anhui, Hefei230026, China
| | - Yixuan Li
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Anhui, Hefei230026, China
| | - Haiyan He
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Anhui, Hefei230026, China
| | - Chunhua Chen
- CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Anhui, Hefei230026, China
| |
Collapse
|
4
|
Clean Preparation of Fe2SiO4 Coated Fe2O3 Integrated With Graphene for Li-ion Storage Application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Ranjbar-Azad M, Behpour M, Keyhanian F. CuO–Fe2O3 nanoparticles embedded onto reduced graphene oxide nanosheets: a high-performance nanocomposite anode for Li-ion battery. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Wheat-like Co3O4 on carbon derived from silk as anode materials for enhanced lithium storage. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Lin J, Cui C, Zhang X, Fan E, Chen R, Wu F, Li L. Closed-loop selective recycling process of spent LiNi xCo yMn 1-x-yO 2 batteries by thermal-driven conversion. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127757. [PMID: 34799163 DOI: 10.1016/j.jhazmat.2021.127757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The consumption of lithium-ion batteries raises raw material demand for and the pressure on ecological sustainability. Metals can be recovered in shorter paths while considerably boosting material use, hence selective recycling of specific elements is becoming a hotspot. This paper proposes a thermally-driven closed-loop recycling process for scrap LiNi1/3Co1/3Mn1/3O2 cathodes, in which Li is efficiently extracted by water leaching. Then, by combining the leaching residue with Li2CO3, a solid-phase synthesis is carried out, with Li being targeted to heal into Ni-Co-Mn-O to construct the layered structure. The electrochemical performance of the resynthesized cathode material is comparable to that of the commercial LiNi0.5Co0.2Mn0.3O2 (NCM523) material. During the thermal-driven conversion, solid-state processes can be observed. To ensure charge conservation, Li+ in the unstable layered structure is released and mixed with SO42- to produce Li2SO4, and lattice oxygen escapes and transforms with Ni2+ to generate NiO. For the resynthesized process, the spherical shape of Ni-Co-Mn-O is largely retained. Notably, sulfur is remained in the form of SO42- throughout the closed-loop process and is therefore free of contamination. The thermal-driven conversion recycling process revealed in this study will encourage researchers to ensure more efforts in efficient and selective recovery for sustainable energy storage of rechargeable batteries.
Collapse
Affiliation(s)
- Jiao Lin
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong 511447, China
| | - Cheng Cui
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaodong Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong 511447, China
| | - Ersha Fan
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong 511447, China; Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China; Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong 511447, China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China; Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou, Guangdong 511447, China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China; Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China.
| |
Collapse
|
8
|
Huang H, Kong L, Shuang W, Xu W, He J, Bu XH. Controlled synthesis of core-shell Fe2O3@N-C with ultralong cycle life for lithium-ion batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Huang H, Kong L, He J, Liu M, Zhang J, Bu XH. Engineering carbon-coated hollow hematite spheres for stable lithium-ion batteries. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Cheula R, Susman MD, West DH, Chinta S, Rimer JD, Maestri M. Local Ordering of Molten Salts at NiO Crystal Interfaces Promotes High‐Index Faceting. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa, 34 20156 Milano Italy
| | - Mariano D. Susman
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - David H. West
- SABIC Technology Center 1600 Industrial Blvd. Sugar Land Houston TX 77478 USA
| | | | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa, 34 20156 Milano Italy
| |
Collapse
|
11
|
Cheula R, Susman MD, West DH, Chinta S, Rimer JD, Maestri M. Local Ordering of Molten Salts at NiO Crystal Interfaces Promotes High-Index Faceting. Angew Chem Int Ed Engl 2021; 60:25391-25396. [PMID: 34406684 PMCID: PMC9290742 DOI: 10.1002/anie.202105018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Given the strong influence of surface structure on the reactivity of heterogeneous catalysts, understanding the mechanisms that control crystal morphology is an important component of designing catalytic materials with targeted shape and functionality. Herein, we employ density functional theory to examine the impact of growth media on NiO crystal faceting in line with experimental findings, showing that molten-salt synthesis in alkali chlorides (KCl, LiCl, and NaCl) imposes shape selectivity on NiO particles. We find that the production of NiO octahedra is attributed to the dissociative adsorption of H2 O, whereas the formation of trapezohedral particles is associated with the control of the growth kinetics exerted by ordered salt structures on high-index facets. To our knowledge, this is the first observation that growth inhibition of metal-oxide facets occurs by a localized ordering of molten salts at the crystal-solvent interface. These findings provide new molecular-level insight on kinetics and thermodynamics of molten-salt synthesis as a predictive route to shape-engineer metal-oxide crystals.
Collapse
Affiliation(s)
- Raffaele Cheula
- Laboratory of Catalysis and Catalytic ProcessesDipartimento di EnergiaPolitecnico di MilanoVia La Masa, 3420156MilanoItaly
| | - Mariano D. Susman
- Department of Chemical and Biomolecular EngineeringUniversity of Houston4726 Calhoun RoadHoustonTX77204-4004USA
| | - David H. West
- SABIC Technology Center1600 Industrial Blvd. Sugar LandHoustonTX77478USA
| | | | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular EngineeringUniversity of Houston4726 Calhoun RoadHoustonTX77204-4004USA
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic ProcessesDipartimento di EnergiaPolitecnico di MilanoVia La Masa, 3420156MilanoItaly
| |
Collapse
|
12
|
Li H, Dai Y, Li X, Shao Z. Preparation of LiNi0.5Co0.2Mn0.3O2 by freeze-drying method. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zhang S, Li Y, Wang Z, Tang Y, Huang X, House SD, Huang H, Zhou Y, Shen W, Yang J, Wang C, Zhao Y, Schlögl R, Hu P, Tao F. Coordination Number-Dependent Complete Oxidation of Methane on NiO Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shiran Zhang
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yuting Li
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ziyun Wang
- School of Chemistry and Chemical Engineering, The Queen’s University, Belfast BT9 5AG, U.K
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Xing Huang
- Deapartment of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, D-14195, Germany
| | - Stephen D. House
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Hao Huang
- School of Chemistry and Chemical Engineering, The Queen’s University, Belfast BT9 5AG, U.K
| | - Yan Zhou
- State Key Lab for Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023, China
| | - Wenjie Shen
- State Key Lab for Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023, China
| | - Judith Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Chengzhi Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongjie Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Robert Schlögl
- Deapartment of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, D-14195, Germany
| | - Peijun Hu
- School of Chemistry and Chemical Engineering, The Queen’s University, Belfast BT9 5AG, U.K
| | - Franklin Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
14
|
Wang Q, Zhao Y, Gao J, Geng H, Li J, Jin H. Triggering the Reversible Reaction of V 3+/V 4+/V 5+ in Na 3V 2(PO 4) 3 by Cr 3+ Substitution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50315-50323. [PMID: 33119261 DOI: 10.1021/acsami.0c11975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sodium-ion batteries (SIBs) have grabbed worldwide attention as an alternative to lithium-ion batteries on account of the abundance and accessibility of the sodium element in nature. For the sake of meeting the requirements for various applications containing grid-scale energy storage system, electric vehicles, and so forth, a stable and high-voltage cathode is decisive to enhance the energy and power density of SIBs. In this research, sodium super ionic conductor structured Na3V1.5-xCr0.5+x(PO4)3 with different V/Cr ratios to balance the V3+/V4+ and V4+/V5+ redox couples was investigated as the potential cathode for SIBs. Among these candidates, Na3V1.3Cr0.7(PO4)3 manifested high energy density together with good cycling performance and rate capability. Combining the structural analysis and density functional theory calculation, the underlying mechanism of V3+ substitution by Cr3+ was uncovered, accounting for the improvement of electrochemical performance.
Collapse
Affiliation(s)
- Qianchen Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yongjie Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Junjie Gao
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang, Sichuan 621900, P. R. China
| | - Huayun Geng
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang, Sichuan 621900, P. R. China
| | - Jingbo Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Haibo Jin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
15
|
Santos R, Martins TA, Silva GN, Conceição MVS, Nogueira IC, Longo E, Botelho G. Ag 3PO 4/NiO Composites with Enhanced Photocatalytic Activity under Visible Light. ACS OMEGA 2020; 5:21651-21661. [PMID: 32905253 PMCID: PMC7469368 DOI: 10.1021/acsomega.0c02456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/31/2020] [Indexed: 05/05/2023]
Abstract
Black NiO powders were prepared by a hydrothermal method. Moreover, the visible light-driven Ag3PO4/NiO photocatalyst composites were successfully synthesized by in situ precipitation method. These samples were structurally characterized by X-ray diffraction and Rietveld refinement. The strong interaction between the phases and the defects in the samples was affected by the formation of the composites, as identified by Fourier transform infrared spectroscopy and Raman spectroscopy. UV-vis diffuse reflectance spectroscopy exhibited enhanced light absorption for all Ag3PO4/NiO composites, suggesting the effective interaction between the phases. Moreover, field-emission scanning electron microscopy images revealed the presence of NiO microflowers composed of nanoflakes in contact with Ag3PO4 microparticles. The composite with 5% NiO presented enhanced photocatalytic efficiency in comparison with pure Ag3PO4, degrading 96% of rhodamine B (RhB) dye in just 15 min under visible light; however, the recycling experiments confirmed that the composite with 75% NiO showed superior stability. The recombination of the electron-hole pairs was considered for the measurement of the photoluminescence of the samples. These measurements were performed to evaluate the possible causes for the difference in the photocatalytic responses of the composites. From these experimental results, possible photocatalytic mechanisms for RhB degradation over Ag3PO4/NiO composites under visible-light irradiation were proposed.
Collapse
Affiliation(s)
- Ricardo
K. Santos
- Department
of Environmental Chemistry, Federal University
of Tocantins, Gurupi, Tocantins 77402-970, Brazil
| | - Tiago A. Martins
- CDMF-UFSCar, Federal University of São Carlos, São Carlos, São
Paulo 13565-905, Brazil
| | - Gabriela N. Silva
- Department
of Environmental Chemistry, Federal University
of Tocantins, Gurupi, Tocantins 77402-970, Brazil
| | - Marcus V. S. Conceição
- Department
of Environmental Chemistry, Federal University
of Tocantins, Gurupi, Tocantins 77402-970, Brazil
| | - Içamira C. Nogueira
- Department
of Physics, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Elson Longo
- CDMF-UFSCar, Federal University of São Carlos, São Carlos, São
Paulo 13565-905, Brazil
| | - Gleice Botelho
- Department
of Environmental Chemistry, Federal University
of Tocantins, Gurupi, Tocantins 77402-970, Brazil
| |
Collapse
|
16
|
Agudosi ES, Abdullah EC, Numan A, Mubarak NM, Aid SR, Benages-Vilau R, Gómez-Romero P, Khalid M, Omar N. Fabrication of 3D binder-free graphene NiO electrode for highly stable supercapattery. Sci Rep 2020; 10:11214. [PMID: 32641769 PMCID: PMC7343816 DOI: 10.1038/s41598-020-68067-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/18/2020] [Indexed: 12/02/2022] Open
Abstract
Electrochemical stability of energy storage devices is one of their major concerns. Polymeric binders are generally used to enhance the stability of the electrode, but the electrochemical performance of the device is compromised due to the poor conductivity of the binders. Herein, 3D binder-free electrode based on nickel oxide deposited on graphene (G-NiO) was fabricated by a simple two-step method. First, graphene was deposited on nickel foam via atmospheric pressure chemical vapour deposition followed by electrodeposition of NiO. The structural and morphological analyses of the fabricated G-NiO electrode were conducted through Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDS). XRD and Raman results confirmed the successful growth of high-quality graphene on nickel foam. FESEM images revealed the sheet and urchin-like morphology of the graphene and NiO, respectively. The electrochemical performance of the fabricated electrode was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in aqueous solution at room temperature. The G-NiO binder-free electrode exhibited a specific capacity of ≈ 243 C g-1 at 3 mV s-1 in a three-electrode cell. A two-electrode configuration of G-NiO//activated charcoal was fabricated to form a hybrid device (supercapattery) that operated in a stable potential window of 1.4 V. The energy density and power density of the asymmetric device measured at a current density of 0.2 A g-1 were estimated to be 47.3 W h kg-1 and 140 W kg-1, respectively. Additionally, the fabricated supercapattery showed high cyclic stability with 98.7% retention of specific capacity after 5,000 cycles. Thus, the proposed fabrication technique is highly suitable for large scale production of highly stable and binder-free electrodes for electrochemical energy storage devices.
Collapse
Affiliation(s)
- Elochukwu Stephen Agudosi
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Arshid Numan
- State Key Laboratory of ASIC and System, SIST, Fudan University, Shanghai, 200433, China
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Sarawak, Malaysia.
| | - Siti Rahmah Aid
- Department of Electronic Systems Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Department of Gigaphoton Next GLP, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Raúl Benages-Vilau
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Pedro Gómez-Romero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia.
| | - Nurizan Omar
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Khalaji AD, Jarosova M, Machek P, Chen K, Xue D. Li-ion battery studies on nickel oxide nanoparticles prepared by facile route calcination. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Li N, He Y, Lian J, Liu Q, Zhang X, Zhang X. Facile fabrication of a NiO/Ag3PO4 Z-scheme photocatalyst with enhanced visible-light-driven photocatalytic activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj01060j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The photocatalytic performance of Z-scheme NiO/Ag/Ag3PO4 was evaluated by degrading organic pollutants under visible light.
Collapse
Affiliation(s)
- Ning Li
- College of Chemical and Environmental Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Yanlei He
- College of Chemical and Environmental Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Jiajia Lian
- College of Chemical and Environmental Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Xiao Zhang
- Shandong Key Laboratory of Biochemical Analysis
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
19
|
Zhang J, Luo W, Xiong T, Yu R, Wu P, Zhu J, Dai Y, Mai L. Carboxyl functionalized carbon incorporation of stacked ultrathin NiO nanosheets: topological construction and superior lithium storage. NANOSCALE 2019; 11:7588-7594. [PMID: 30964473 DOI: 10.1039/c8nr09893j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) nanostructure engineering and surface modification with functional groups are of great importance to anode materials for rechargeable lithium-ion batteries. Herein, stacked NiO nanosheets@carbon (denoted as NiO@C) and 3 nm-ultrathin NiO nanosheets@functionalized carbon with surface functional groups NO3-, CO32-, OH-, and COOH- (denoted as NiO@FC) were prepared via a facile one-pot reaction and topotactic conversion. Specifically, NiO@FC exhibits excellent lithium storage performance: the capacity of NiO@FC is 489.2 mA h g-1, higher than that of NiO@C (1018.7 mA h g-1 at 0.2 A g-1), and maintains a capacity of 1133 mA h g-1 after 800 cycles, which exceed that of all previously reported NiO anodes. The enhanced lithium storage performance is attributed to the sufficient void space, which offers buffer space for volume change and speeds up the diffusion of Li+ ions. In addition, the surface functional groups were proved to not only hinder the agglomeration of nanosheets but also further donate active sites and improve storage capacity. These advantageous features achieved by designing such a stacked structure with functionalized carbon modification provide a promising strategy for the preparation of high-performance anode materials and other 2D functional materials.
Collapse
Affiliation(s)
- Jiaxu Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Evmenenko G, Fister TT, Castro FC, Chen X, Lee B, Buchholz DB, Dravid VP, Fenter P, Bedzyk MJ. Structural analysis of the initial lithiation of NiO thin film electrodes. Phys Chem Chem Phys 2019; 21:8897-8905. [DOI: 10.1039/c9cp01527b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our results reveal that conversion reactions and structural changes in NiO thin film electrodes begin near the theoretical lithiation potential.
Collapse
Affiliation(s)
- Guennadi Evmenenko
- Department of Materials Science and Engineering
- Northwestern University
- Evanston
- USA
| | - Timothy T. Fister
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Lemont
- USA
| | - Fernando C. Castro
- Department of Materials Science and Engineering
- Northwestern University
- Evanston
- USA
| | - Xinqi Chen
- NUANCE Center
- Northwestern University
- Evanston
- USA
- Department of Mechanical Engineering
| | - Byeongdu Lee
- X-ray Science Division
- Argonne National Laboratory
- Lemont
- USA
| | - D. Bruce Buchholz
- Department of Materials Science and Engineering
- Northwestern University
- Evanston
- USA
| | - Vinayak P. Dravid
- Department of Materials Science and Engineering
- Northwestern University
- Evanston
- USA
| | - Paul Fenter
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Lemont
- USA
| | - Michael J. Bedzyk
- Department of Materials Science and Engineering
- Northwestern University
- Evanston
- USA
- Department of Physics and Astronomy, Northwestern University
| |
Collapse
|
21
|
Wang C, Zhao Y, Zhai X, Zhao X, Li J, Jin H. Confining ferric oxides in porous carbon for efficient lithium storage. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Wang C, Zhao Y, Zhai X, Ding C, Zhao X, Li J, Jin H. Graphene boosted pseudocapacitive lithium storage: A case of G-Fe2O3. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Hu N, Tang Z, Shen PK. Hierarchical NiO nanobelt film array as an anode for lithium-ion batteries with enhanced electrochemical performance. RSC Adv 2018; 8:26589-26595. [PMID: 35541063 PMCID: PMC9083283 DOI: 10.1039/c8ra03599g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, an ultrathin 2-dimensional hierarchical nickel oxide nanobelt film array was successfully assembled and grown on a Ni substrate as a binder-free electrode material for lithium ion batteries.
Collapse
Affiliation(s)
- Ning Hu
- Collaborative Innovation Center of Sustainable Energy Materials
- Guangxi University
- China
- Guangxi Key Laboratory of Electrochemical Energy Materials
- Guangxi University
| | - Zheng Tang
- Collaborative Innovation Center of Sustainable Energy Materials
- Guangxi University
- China
- Guangxi Key Laboratory of Electrochemical Energy Materials
- Guangxi University
| | - Pei Kang Shen
- Collaborative Innovation Center of Sustainable Energy Materials
- Guangxi University
- China
- Guangxi Key Laboratory of Electrochemical Energy Materials
- Guangxi University
| |
Collapse
|
24
|
Fabrication of a Ti/TiO2/NiO electrode for electrocatalytic nitrite removal. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Abdel Hameed R, Medany SS. Enhanced electrocatalytic activity of NiO nanoparticles supported on graphite planes towards urea electro-oxidation in NaOH solution. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2017; 42:24117-24130. [DOI: 10.1016/j.ijhydene.2017.07.236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
26
|
Wang C, Zhao Y, Ximei Z, Su D, Ding C, Li J, Jin H. The effect of the phase structure on physicochemical properties of TMO materials: a case of spinel to bunsenite. CrystEngComm 2017. [DOI: 10.1039/c7ce01491k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is worthwhile to comprehensively investigate the relationship between different phase structures and physicochemical properties of TMO materials.
Collapse
Affiliation(s)
- Chengzhi Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| | - Yongjie Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| | - Zhai Ximei
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| | - Dezhi Su
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| | - Caihua Ding
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| | - Jingbo Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| | - Haibo Jin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| |
Collapse
|
27
|
Fu Q, Ai M, Duan Y, Lu L, Tian X, Sun D, Xu Y, Sun Y. Synthesis of uniform porous NiO nanotetrahedra and their excellent gas-sensing performance toward formaldehyde. RSC Adv 2017. [DOI: 10.1039/c7ra10730g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Porous NiO nanotetrahedrons and elongated irregular nanoparticles were synthesized, exhibiting superior gas-sensing behavior toward formaldehyde with high gas sensitivity and stability.
Collapse
Affiliation(s)
- Qingjie Fu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Mingmei Ai
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Yi Duan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Lingmei Lu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Xin Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Dandan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Yanyan Xu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Yaqiu Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| |
Collapse
|