1
|
Su L, Ren J, Lu T, Chen K, Ouyang J, Zhang Y, Zhu X, Wang L, Min H, Luo W, Sun Z, Zhang Q, Wu Y, Sun L, Mai L, Xu F. Deciphering Structural Origins of Highly Reversible Lithium Storage in High Entropy Oxides with In Situ Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205751. [PMID: 36921344 DOI: 10.1002/adma.202205751] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/20/2023] [Indexed: 05/12/2023]
Abstract
Configurational entropy-stabilized single-phase high-entropy oxides (HEOs) have been considered revolutionary electrode materials with both reversible lithium storage and high specific capacity that are difficult to fulfill simultaneously by conventional electrodes. However, precise understanding of lithium storage mechanisms in such HEOs remains controversial due to complex multi-cationic oxide systems. Here, distinct reaction dynamics and structural evolutions in rocksalt-type HEOs upon cycling are carefully studied by in situ transmission electron microscopy (TEM) including imaging, electron diffraction, and electron energy loss spectroscopy at atomic scale. The mechanisms of composition-dependent conversion/alloying reaction kinetics along with spatiotemporal variations of valence states upon lithiation are revealed, characterized by disappearance of the original rocksalt phase. Unexpectedly, it is found from the first visualization evidence that the post-lithiation polyphase state can be recovered to the original rocksalt-structured HEOs via reversible and symmetrical delithiation reactions, which is unavailable for monometallic oxide systems. Rigorous electrochemical tests coupled with postmortem ex situ TEM and bulk-level phase analyses further validate the crucial role of structural recovery capability in ensuring the reversible high-capacity Li-storage in HEOs. These findings can provide valuable guidelines to design compositionally engineer HEOs for almighty electrodes of next-generation long-life energy storage devices.
Collapse
Affiliation(s)
- Lin Su
- SEU-FEI Nano-Pico Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Jingke Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Tao Lu
- School of Materials Science & Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Kexuan Chen
- SEU-FEI Nano-Pico Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Jianwei Ouyang
- SEU-FEI Nano-Pico Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yue Zhang
- School of Materials Science & Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xingyu Zhu
- SEU-FEI Nano-Pico Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Luyang Wang
- SEU-FEI Nano-Pico Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Huihua Min
- Electron Microscope Laboratory, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Wen Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yi Wu
- SEU-FEI Nano-Pico Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Feng Xu
- SEU-FEI Nano-Pico Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
2
|
Jung WB, Hong YJ, Yoon J, Moon S, Choi S, Kim DY, Suk J, Chae OB, Wu M, Jung HT. Three-Dimensional SnO2 Nanoparticles Synthesized by Joule Heating as Anode Materials for Lithium Ion Batteries. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac6e78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Tin dioxide (SnO2) is a promising material for use as anodes because of its high theoretical capacity (1,494 mAh g−1). However, a critical limitation is the large change in volume during repeated cycling by pulverization of SnO2, which results in capacity fading. In this study, we enhanced cycle life and reduced capacity fading by introducing the use of three-dimensional SnO2 nanoparticles on carbon nanofibers (CNFs) as an anode material, which is fabricated by simple carbothermal shock through the Joule heating method. Our observations show that the SnO2 nanoparticles are about 50 nm in diameter and are uniformly distributed on CNF, and that the strong connections between SnO2 nanoparticles and CNF are sustained even after repeated cycling. This structural advantage provides high reversible capacity and enhanced cycle performance for over 100 cycles. This study provides insight into the fabrication of anode materials that have strong electric connections between active materials and conductive materials due to the Joule heating method for high-performance lithium ion batteries.
Collapse
|
3
|
Vashishth S, Singh DK, Prabhakaran VC, Muthusamy E. Single step strategy for crafting tin/carbon soot composite as highly stable Li‐ion battery anode. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Surishi Vashishth
- Nanomaterials and Catalysis Lab Chemistry and Physics of Materials Unit; School of Advanced Materials (SAMat) Jawaharlal Nehru for Advanced Scientific Research (JNCASR) Bengaluru India
| | - Dheeraj Kumar Singh
- Nanomaterials and Catalysis Lab Chemistry and Physics of Materials Unit; School of Advanced Materials (SAMat) Jawaharlal Nehru for Advanced Scientific Research (JNCASR) Bengaluru India
| | | | - Eswaramoorthy Muthusamy
- Nanomaterials and Catalysis Lab Chemistry and Physics of Materials Unit; School of Advanced Materials (SAMat) Jawaharlal Nehru for Advanced Scientific Research (JNCASR) Bengaluru India
| |
Collapse
|
4
|
Zhu H, Zhang M, Li B, Liu Y, Zhuang J, Zhao X, Xue M, Wang L, Liu Y, Tao X. Developing hydrothermal fabrication and energy storage applications for MTeMoO6 (M=Zn, Mg, Mn). J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Darr JA, Zhang J, Makwana NM, Weng X. Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions. Chem Rev 2017; 117:11125-11238. [PMID: 28771006 DOI: 10.1021/acs.chemrev.6b00417] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanomaterials are at the leading edge of the emerging field of nanotechnology. Their unique and tunable size-dependent properties (in the range 1-100 nm) make these materials indispensable in many modern technological applications. In this Review, we summarize the state-of-art in the manufacture and applications of inorganic nanoparticles made using continuous hydrothermal flow synthesis (CHFS) processes. First, we introduce ideal requirements of any flow process for nanoceramics production, outline different approaches to CHFS, and introduce the pertinent properties of supercritical water and issues around mixing in flow, to generate nanoparticles. This Review then gives comprehensive coverage of the current application space for CHFS-made nanomaterials including optical, healthcare, electronics (including sensors, information, and communication technologies), catalysis, devices (including energy harvesting/conversion/fuels), and energy storage applications. Thereafter, topics of precursor chemistry and products, as well as materials or structures, are discussed (surface-functionalized hybrids, nanocomposites, nanograined coatings and monoliths, and metal-organic frameworks). Later, this Review focuses on some of the key apparatus innovations in the field, such as in situ flow/rapid heating systems (to investigate kinetics and mechanisms), approaches to high throughput flow syntheses (for nanomaterials discovery), as well as recent developments in scale-up of hydrothermal flow processes. Finally, this Review covers environmental considerations, future directions and capabilities, along with the conclusions and outlook.
Collapse
Affiliation(s)
- Jawwad A Darr
- Department of Chemistry, University College London, Christopher Ingold Laboratories , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Jingyi Zhang
- Department of Environmental & Resource Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Neel M Makwana
- Department of Chemistry, University College London, Christopher Ingold Laboratories , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Xiaole Weng
- Department of Environmental & Resource Sciences, Zhejiang University , 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|