1
|
Moranova L, Stanik M, Hrstka R, Campuzano S, Bartosik M. Electrochemical LAMP-based assay for detection of RNA biomarkers in prostate cancer. Talanta 2022; 238:123064. [PMID: 34801892 DOI: 10.1016/j.talanta.2021.123064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Current molecular diagnostics of prostate cancer relies on detection of elevated levels of PSA protein in serum, but its specificity has been questioned due to its higher levels also in non-malignant prostate diseases. A long non-coding RNA biomarker, PCA3, demonstrated excellent specificity for prostate cancer, and thus has become an interesting alternative to PSA monitoring. Its detection utilizes mostly reverse transcription PCR with optical detection, making the protocol longer and more expensive. To avoid PCR, we have developed an electrochemical assay coupled with LAMP, an isothermal amplification technique showing high sensitivities at constant temperatures and shorter reaction times. We amplified PCA3 RNA as well as PSA mRNA (serving as a control), hybridized LAMP products on magnetic beads and measured them with chronoamperometry at carbon electrode chips. We show good sensitivity and specificity for both biomarkers in prostate cancer cell lines, and successful detection of PCA3 in clinical samples, i.e., urine samples from 11 prostate cancer patients and 7 healthy controls, where we obtained excellent correlation with clinical data. This is to our knowledge a first such attempt to apply electrochemistry to determine two RNA biomarkers directly in urine samples of prostate cancer patients in a minimally invasive diagnostics format.
Collapse
Affiliation(s)
- Ludmila Moranova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Michal Stanik
- Department of Urologic Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
2
|
Li Z, Pi T, Yang K, Xia Z, Feng Y, Zheng X, Deng R, Chi B. Label-free fluorescence strategy for methyltransferase activity assay based on poly-thymine copper nanoclusters engineered by terminal deoxynucleotidyl transferase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119924. [PMID: 33993023 DOI: 10.1016/j.saa.2021.119924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The assay of detecting DNA methyltransferase activity has been identified as one of the central challenges in cancer diagnostics as DNA methylation is closely related to the diagnosis and treatment of tumors. In this study, a label-free fluorescence probe based on poly-thymine copper nanoclusters engineered by terminal deoxynucleotidyl transferase is proposed for methyltransferase activity assay. Taking advantage of the efficient polymerization extension reaction catalyzed by terminal deoxynucleotidyl transferase and the copper nanoclusters with large Stokes shift instead of labeling fluorescent dyes, the strategy exhibits a broader linear scope from 1 to 300 U mL-1 with a detection limit of 0.176 U mL-1. The economical method is specificity for M.SssI and also provides a convenient and high-throughput platform for screening the DNA methylation inhibitors, which displays a great potential for the practical applications of the drug development and clinical cancer diagnosis in the future.
Collapse
Affiliation(s)
- Zhimei Li
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Ting Pi
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Kefang Yang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Ziyi Xia
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Yuchuan Feng
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Xiangjuan Zheng
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Ruihong Deng
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Baozhu Chi
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
3
|
Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta 2020; 225:121974. [PMID: 33592722 DOI: 10.1016/j.talanta.2020.121974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | | | | | | | | | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
4
|
Araiza-Olivera D, Gutierrez-Aguilar M, Espinosa-García AM, García-García JA, Tapia-Orozco N, Sánchez-Pérez C, Palacios-Reyes C, Escárcega D, Villalón-López DN, García-Arrazola R. From bench to bedside: Biosensing strategies to evaluate endocrine disrupting compounds based on epigenetic events and their potential use in medicine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103450. [PMID: 32622887 DOI: 10.1016/j.etap.2020.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The relationship between endocrine system disorders and health risks due to chemical environmental compounds has become a growing concern in recent years. Involuntary exposure to endocrine disruptors (EDCs) is associated with the worldwide increase of diseases such as cancer, obesity, diabetes, and neurocortical disorders. EDCs are compounds that target the nuclear hormonereceptors (NHR) leading to epigenetic changes. Consequently, the use of biosensing strategies based on epigenetic events have a great potential to provide outstanding information about the exposition of EDCs and their evaluation in human health. This review addresses the novel trends in biosensing EDCs evaluation based on DNA methylation assays associated with different human diseases.
Collapse
Affiliation(s)
- D Araiza-Olivera
- Department of Chemistry and Biomolecules, Institute of Chemistry, UNAM, Mexico.
| | | | - A M Espinosa-García
- Unidad de Medicina Genómica, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - J A García-García
- Department of Education, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - N Tapia-Orozco
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Sánchez-Pérez
- Institute of Applied Sciences and Technology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Palacios-Reyes
- Laboratory of Genetics and Molecular Diagnostics, Juarez Hospital of Mexico, Mexico City, Mexico.
| | - D Escárcega
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, calle del Puente 222, Ejidos de Huipulco, Tlalpan 14380, Mexico City, Mexico.
| | - Demelza N Villalón-López
- Instituto Politénico Nacional-Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Prolongación de Carpio y Plande Ayala, colonia Casco de Santo Tomás. Del, Miguel Hidalgo, 11350, Mexico.
| | - R García-Arrazola
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| |
Collapse
|
5
|
Špaček J, Eksin E, Havran L, Erdem A, Fojta M. Fast enzyme-linked electrochemical sensing of DNA hybridization at pencil graphite electrodes. Application to detect gene deletion in a human cell culture. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Sousa JB, Ramos-Jesus J, Silva LC, Pereira C, de-Los-Santos-Álvarez N, Fonseca RAS, Miranda-Castro R, Delerue-Matos C, Santos Júnior JR, Barroso MF. Fe 3O 4@Au nanoparticles-based magnetoplatform for the HMGA maize endogenous gene electrochemical genosensing. Talanta 2019; 206:120220. [PMID: 31514891 DOI: 10.1016/j.talanta.2019.120220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 11/25/2022]
Abstract
This work addresses a technological advance applied to the construction of a magnetogenoassay with electrochemical transduction for the maize taxon-specific (HMGA gene) detection using gold-coated magnetic nanoparticles as nanosized platform. Superparamagnetic core-shell Fe3O4@Au nanoparticles (10.4 ± 1.7 nm) were used to assemble the genoassay through the covalent immobilization of HMGA DNA probes onto carboxylated self-assembled monolayers at the nanoparticles surface. A hybridization reaction using sandwich format was selected to prevent inefficient hybridization connected with stable secondary DNA structures using also fluorescein isothiocyanate as DNA signaling tag. The labelling of the hybridization reaction with enzymes allowed the chronoamperometric measurement of the peroxidase activity linked to the nanoplatform located on gold surface. Using this electrochemical magnetogenoassay a linear concentration range from 0.5 to 5 nM and a LOD of 90 pM with a RSD <1.2% was calculated. Certified maize was evaluated without further purification after PCR amplification. This work highlights the efficacy of the electrochemical magnetogenoassay for the HMGA detection, showing its potential as alternative procedure for the verification of the compliance of the legislation.
Collapse
Affiliation(s)
- Juliana Beatriz Sousa
- Programa de Pós-graduação em Biotecnologia - RENORBIO, Pró-reitoria de pesquisa e pós-graduação, Universidade Federal do Piauí - UFPI, Teresina, Brasil; REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Joilson Ramos-Jesus
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, UFPI, Parnaíba, Brazil
| | - L C Silva
- Instituto de Ciências Biológicas - ICB/UPE, Recife, Brazil
| | - C Pereira
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | | - R Miranda-Castro
- Dpto. Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - J Ribeiro Santos Júnior
- Programa de Pós-graduação em Biotecnologia - RENORBIO, Pró-reitoria de pesquisa e pós-graduação, Universidade Federal do Piauí - UFPI, Teresina, Brasil
| | - M Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Amplification strategy for sensitive detection of methyltransferase activity based on surface plasma resonance techniques. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|