1
|
Le HTN, Kim D, Phan LMT, Cho S. Ultrasensitive capacitance sensor to detect amyloid-beta 1-40 in human serum using supramolecular recognition of β-CD/RGO/ITO micro-disk electrode. Talanta 2022; 237:122907. [PMID: 34736644 DOI: 10.1016/j.talanta.2021.122907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023]
Abstract
In this paper, we developed a new ultrasensitive capacitance sensor for detection of amyloid beta 1-40 (aβ40) protein (one of Alzheimer's disease core biomarkers) in human serum based on the high supramolecular recognition of the β-cyclodextrin/reduced graphene oxide (β-CD/RGO) nanohybrid toward the anti-aβ40 antibody molecule. The sensor was established by immobilizing specific anti-aβ40 antibody onto the β-CD/RGO nanohybrid functionalized on indium tin oxide micro-disk electrode (anti-aβ40/β-CD/RGO/ITO). Detection of aβ40 in the human serum (HS) using the sensor anti-aβ40/β-CD/RGO/ITO is carried out by capacitance measurement without a redox probe to prevent protein denaturation, serving as a convenient strategy for point-of-care diagnosis. In comparison with other studies, the sensor shows a very low limit of detection of 0.69 fg mL-1 in HS, demonstrating its ability for the ultrasensitive detection of aβ40. Using this sensor, the dissociation constant KD of the binding interaction between anti-aβ40 and aβ40 in HS is found to be 2.9 × 10-7 nM, indicating the high binding affinity of antibody-antigen and the suitability of the anti-aβ40/β-CD/RGO/ITO sensor for aβ40 protein detection. The good selectivity of the anti-aβ40/β-CD/RGO/ITO sensor in the presence of differential analytes was also performed in this paper.
Collapse
Affiliation(s)
- Hien T Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Daesoo Kim
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, South Korea; School of Medicine and Pharmacy, The University of Danang, Danang, 550000, Viet Nam.
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, South Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
2
|
Sensitive Electrochemical Detection of Phosphorylated-Tau Threonine 231 in Human Serum Using Interdigitated Wave-Shaped Electrode. Biomedicines 2021; 10:biomedicines10010010. [PMID: 35052691 PMCID: PMC8773253 DOI: 10.3390/biomedicines10010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
The development of an electrochemical biosensor for the detection of phosphorylated-tau threonine 231 (p-tau231), a biomarker of Alzheimer’s disease (AD), has yet to be achieved. Therefore, in this study, we developed a simple, small size, cheap, and sensitive electrochemical biosensor based on an interdigitated wave-shaped electrode via an activated self-assembled monolayer to preserve a specific anti–p-tau231 antibody (IWE/SAM/EDC-NHS/anti–p-tau231). Detection of p-tau231 in human serum (HS) using the biosensor was undertaken using electrochemical impedance spectroscopy (EIS). The change in charge-transfer resistance (Rct) in the EIS analysis of the biosensor indicated the detection of p-tau231 in HS within a wide linear range of detection (10−4–101 ng mL−1), and a low limit of detection (140 pg mL−1). This lower limit is less than the detection level of p-tau231 in cerebrospinal fluid (CSF) (700 pg mL−1) of AD patients and the level of CSF p-tau231 of patients with mild cognitive impairment (501 pg mL−1), demonstrating the possibility of using the biosensor in detection of p-tau231 at early stage AD. A high binding affinity and low dissociation constant (Kd) between anti–p-tau231 and p-tau231 in HS was demonstrated by using a biosensor and Kd was 7.6 pM, demonstrating the high specific detection of p-tau231 by the biosensor. The good selectivity of the biosensor for the detection of p-tau231 with differential analytes was also examined in this study.
Collapse
|
3
|
Shen M, Kan X. Aptamer and molecularly imprinted polymer: Synergistic recognition and sensing of dopamine. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137433] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Prasad Aryal K, Kyung Jeong H. Electrochemical detection of ascorbic acid with chemically functionalized carbon nanofiber/β-cyclodextrin composite. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Control of surface functionalization of graphene-metal oxide polymer nanocomposites prepared by a hydrothermal method. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03342-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Zhao Y, Zheng X, Wang Q, Zhe T, Bai Y, Bu T, Zhang M, Wang L. Electrochemical behavior of reduced graphene oxide/cyclodextrins sensors for ultrasensitive detection of imidacloprid in brown rice. Food Chem 2020; 333:127495. [PMID: 32663747 DOI: 10.1016/j.foodchem.2020.127495] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/11/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
Various pesticides employed in modern agriculture result in large amounts of pesticide residues in agricultural production, greatly threatening human health. Herein, we report a facile approach to fabricate a reduced graphene oxide/cyclodextrin modified glassy carbon electrode (rGO/CD/GCE) for the sensitive electrochemical sensing of imidacloprid (IDP). Three different modified electrodes using CDs (α-, β-, γ-CD) were fabricated, and their electrochemical performance was further studied. The results demonstrate that α-CD possesses the best signal amplification for IDP. Compared with wet-chemical synthesis of rGO/CDs (W-rGO/CDs), the electrochemical synthesis of rGO/CDs (E-rGO/CDs) produced sensors that showed better performance for IDP sensing. Taking advantage of prepared E-rGO/α-CD nanocomposite, the fabricated sensor offered a low detection limit (0.02 μM) with a wider linear range (0.5-40 μM) and long-term stability. The new sensor was successfully applied for the detection of IDP in brown rice, providing a new technique for efficient and convenient monitoring of pesticide residues in food.
Collapse
Affiliation(s)
- Yijian Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaohan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinzhi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaowen Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Shuang Y, Cao Z, Zhang T, Li L. Enantiomeric Separation of Chiral Triazole Pesticides by a mono-6-(4-Nitrophenyl)-ureido-β-cyclodextrin-Bonded Stationary Phase Using High-Performance Liquid Chromatography. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1745821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yazhou Shuang
- Department of Chemistry, College of Chemistry, Nanchang University, Nanchang, China
| | - Zhigang Cao
- Department of Chemistry, College of Chemistry, Nanchang University, Nanchang, China
| | - Tianci Zhang
- Department of Chemistry, College of Chemistry, Nanchang University, Nanchang, China
| | - Laisheng Li
- Department of Chemistry, College of Chemistry, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Carbon nanofiber modified with reduced graphite oxide for detection of ascorbic acid, dopamine, and uric acid. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Aryal KP, Jeong HK. Modification of β-cyclodextrin-carbon nanotube-thermally reduced graphite oxide by using ambient plasma for electrochemical sensing of ascorbic acid. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Kasprzak A, Fateyeva K, Bystrzejewski M, Kaszuwara W, Fronczak M, Koszytkowska-Stawinska M, Poplawska M. Covalent mechanochemical functionalization of carbon-encapsulated iron nanoparticles towards the improvement of their colloidal stability. Dalton Trans 2018; 47:11190-11202. [PMID: 30051129 DOI: 10.1039/c8dt01795f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanochemical covalent functionalization of carbon-encapsulated iron nanoparticles (CEINs) is reported. Unprotected sugars (mannose, galactose, β-cyclodextrin) and amino sugars (glucosamine and chitosan) were successfully conjugated to the surface of CEINs. The developed grinding-induced methods employ (i) the 1,3-dipolar cycloadditions of nitrile oxides or azomethine ylides and (ii) amidation-type reactions with the inclusion of carboxyl-functionalized CEINs and amino sugars. All the developed mechanochemical processes are fast (reaction time 10 min) and result in high degrees of coverage (7.3-31.5 wt%). The presented functionalization routes also constitute easy to perform and environmentally improved protocols. Moreover, the use of toxic organic solvents is not required. A comprehensive study on the colloidal stability of the sugar-functionalized CEINs is also included in this work. The results of the turbidimetric analyses reveal that both grinding-induced formation of amide bonds and the cycloadditions of sugar moieties to the surface of CEINs result in the significant improvement of their colloidal stability. The highest stability of the aqueous dispersion was found for CEINs functionalized with β-cyclodextrin. The comparative studies between the classical wet approach and the grinding-induced functionalization of CEINs show that the herein developed environmentally improved method increases the colloidal stability three times. The crucial role of the mechanochemical approach in the covalent functionalization of CEINs and the improvement of their colloidal stability is discussed in this work.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kasprzak A, Poplawska M. Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem Commun (Camb) 2018; 54:8547-8562. [PMID: 29972382 DOI: 10.1039/c8cc04120b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of cyclodextrin species to graphene-family materials (GFMs) constitutes an important area of research, especially in terms of the development of applied nanoscience. The chemistry of cyclodextrins is the so-called host-guest chemistry, which has impacted on many fields of research, including catalysis, electrochemistry and nanomedicine. Cyclodextrins are water-soluble and biocompatible supramolecules, and therefore they may introduce new interesting properties to GFMs and may enhance the physicochemical/biological features of native GFMs. The reported methods for the conjugation of cyclodextrins to GFMs utilize either covalent or non-covalent approaches. The recent progress in the applications of GFMs functionalized with cyclodextrins, with the respect to the chemistry and features of these conjugates, is discussed. Special consideration is also given to the recent developments in (i) nanomedicine, (ii) electrochemistry, (iii) adsorption and (iv) catalysis. Examples of these materials are discussed in this work, together with the future outlook on the impact of GFM-cyclodextrin conjugates in the development of applied nanoscience.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
12
|
|
13
|
Le HTN, Jeong HK. Enhanced supramolecular recognition capability of gamma cyclodextrin-graphite oxide-carbon nanotube composite. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|