1
|
Cheng L, Jin R, Jiang D, Zhuang J, Liao X, Zheng Q. Scanning Electrochemical Cell Microscopy Platform with Local Electrochemical Impedance Spectroscopy. Anal Chem 2021; 93:16401-16408. [PMID: 34843214 DOI: 10.1021/acs.analchem.1c02972] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Local electrochemical impedance spectroscopy (LEIS) has been a versatile technology for characterizing local complex electrochemical processes at heterogeneous surfaces. However, further application of this technology is restricted by its poor spatial resolution. In this work, high-spatial-resolution LEIS was realized using scanning electrochemical cell microscopy (SECCM-LEIS). The spatial resolution was proven to be ∼180 nm based on experimental and simulation results. The stability and reliability of this platform were further verified by long-term tests and Kramers-Kronig transformation. With this technology, larger electric double-layer capacitance (Cdl) and smaller interfacial resistance (Rt) were observed at the edges of N-doped reduced graphene oxide, as compared to those at the planar surface, which may be due to the high electrochemical activity at the edges. The established SECCM-LEIS provides a high-spatial approach for study of the interfacial electrochemical behavior of materials, which can contribute to the elucidation of the electrochemical reaction mechanism at material surfaces.
Collapse
Affiliation(s)
- Lei Cheng
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiaobo Liao
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P.R. China
| | - Qiangqiang Zheng
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
2
|
Shkirskiy V, Kang M, McPherson IJ, Bentley CL, Wahab OJ, Daviddi E, Colburn AW, Unwin PR. Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy. Anal Chem 2020; 92:12509-12517. [PMID: 32786472 DOI: 10.1021/acs.analchem.0c02358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical impedance spectroscopy (EIS) is a versatile tool for electrochemistry, particularly when applied locally to reveal the properties and dynamics of heterogeneous interfaces. A new method to generate local electrochemical impedance spectra is outlined, by applying a harmonic bias between a quasi-reference counter electrode (QRCE) placed in a nanopipet tip of a scanning ion conductance microscope (SICM) and a conductive (working electrode) substrate (two-electrode setup). The AC frequency can be tuned so that the magnitude of the impedance is sensitive to the tip-to-substrate distance, whereas the phase angle is broadly defined by the local capacitive response of the electrical double layer (EDL) of the working electrode. This development enables the surface topography and the local capacitance to be sensed reliably, and separately, in a single measurement. Further, self-referencing the probe impedance near the surface to that in the bulk solution allows the local capacitive response of the working electrode substrate in the overall AC signal to be determined, establishing a quantitative footing for the methodology. The spatial resolution of AC-SICM is an order of magnitude larger than the tip size (100 nm radius), for the studies herein, due to frequency dispersion. Comprehensive finite element method (FEM) modeling is undertaken to optimize the experimental conditions and minimize the experimental artifacts originating from the frequency dispersion phenomenon, and provides an avenue to explore the means by which the spatial resolution could be further improved.
Collapse
Affiliation(s)
- Viacheslav Shkirskiy
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Oluwasegun J Wahab
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alex W Colburn
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Li X, Ahmadi M, Collins L, Kalinin SV. Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Burczyk L, Darowicki K. Local electrochemical impedance spectroscopy in dynamic mode of galvanic coupling. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|