1
|
Gan LP, Li J, Shi F, Zou Z, Li KJ, Shi ZZ, Wu XS, Li YP, Sun W, Lu ZS, Hu T, Dai L, Li CM. Co 4+ in porous ZIF-67-derives intercalating-bridging adsorption of 2-reaction sites for simultaneous 2-electron transfer toward sensitive detection of uric acid. Anal Chim Acta 2024; 1308:342614. [PMID: 38740455 DOI: 10.1016/j.aca.2024.342614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/11/2024] [Accepted: 04/13/2024] [Indexed: 05/16/2024]
Abstract
Metal-organic frameworks (MOFs) have been used to detect uric acid (UA), but still very challenging to achieve a low detection limit due to the low inferior conductivity of MOFs. Herein, three different N-doped ZIF-67-derived carbons were synthesized for the first time by one-step co-pyrolysis of 2-methylimidazole with cobalt nitrate (CN), cobalt acetate (CA) or cobalt chloride (CC) toward UA sensing. Afterwards, the cobalt nitrate-derived Co particle (Co/CN) supported by N-doped ZIF-67-derived carbon displays extremely low detection limit and high sensitivity for UA, outperformed all reported MOFs-based UA sensors. More interestingly, it was discovered that the high valence Co4+ within the Co/CN sample produced in high-acidic environment can intercalate in the frame for a bridge adsorption between two reaction sites, which boosted simultaneous 2-electron transfer, while Co3+ only allows an end-adsorption structure for one-electron transfer being the rate determining step. Furthermore, the bridge adsorption mode of UA on Co4+ -based catalyst was also verified by theoretical DFT calculations and XPS experiment. This work holds great promise for a selective and sensitive UA sensor for practical bioscience and clinic diagnostic applications while shedding lights in fundamental research for innovative designs and developments of high-sensitive electrochemical sensors.
Collapse
Affiliation(s)
- Li Peng Gan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, China; Institute for Clean Energy and Advanced Materials, School of Materials & Energy, Southwest University, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, China; Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Juan Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, China; Institute for Clean Energy and Advanced Materials, School of Materials & Energy, Southwest University, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, China; Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Fan Shi
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhuo Zou
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ke Jiang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, China; Institute for Clean Energy and Advanced Materials, School of Materials & Energy, Southwest University, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, China
| | - Zhuan Zhuan Shi
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Shuai Wu
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yun Peng Li
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Zhi Song Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, China; Institute for Clean Energy and Advanced Materials, School of Materials & Energy, Southwest University, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, China.
| | - Tao Hu
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Chang Ming Li
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
5
|
Rahmani K, Habibi B. NiCo alloy nanoparticles electrodeposited on an electrochemically reduced nitrogen-doped graphene oxide/carbon-ceramic electrode: a low cost electrocatalyst towards methanol and ethanol oxidation. RSC Adv 2019; 9:34050-34064. [PMID: 35528884 PMCID: PMC9073643 DOI: 10.1039/c9ra06290d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/16/2019] [Indexed: 01/24/2023] Open
Abstract
In this work, nickel-cobalt alloy nanoparticles were electrodeposited on/in an electrochemically reduced nitrogen-doped graphene oxide (ErN-GO)/carbon-ceramic electrode (CCE) and the resulting nanocomposite (NiCo/ErN-GO/CCE) was evaluated as a low cost electrocatalyst for methanol and ethanol electrooxidation. Field-emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy were used for the physical characterization of the electrocatalyst. To study the electrochemical behavior and electrocatalytic activity of the prepared electrocatalyst towards the oxidation of methanol and ethanol in alkaline media, cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were utilized. Electrochemical investigation of the introduced electrocatalysts (NiCo alloy and Ni nanoparticles alone electrodeposited on/in different substrates) indicated that NiCo/ErN-GO/CCE has highest activity and stability towards methanol (J p = 88.04 mA cm-2) and ethanol (J p = 64.23 mA cm-2) electrooxidation, which highlights its potential use as an anodic material in direct alcohol fuel cells.
Collapse
Affiliation(s)
- Kaveh Rahmani
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452079
| | - Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452079
| |
Collapse
|
6
|
The insight study of SnO pico size particles in an ethanol-water system followed by its biosensing application. Biosens Bioelectron 2018; 117:129-137. [PMID: 29894849 DOI: 10.1016/j.bios.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
Pico sized Stannous oxide particles (SnO PPs) were synthesized in an ethanol-water solvent system on the surface of nitrogen doped graphene oxide (GO). The highly conductive support was a combination of dual interactions between 4-aminomethylbenzylamine (AMBA) and GO. The oppositely positioned -NH2 linkers of the AMBA were covalently incorporated into the GO matrix through condensation reaction followed by the strong π - π stacking interactions between aromatic rings of AMBA and GO. The change in the local chemical environment of GO via dual interactions provided a suitable atmosphere for the growth and dispersion of SnO PPs on GO-AMBA surface. The possible mechanism for the formation of SnO in an ethanol-water solvent system was evaluated. Furthermore, a light was shed on the factors responsible for the pico size of SnO particles synthesis along with its phenomenal distribution on the GO-AMBA surface. The catalyst containing SnO PPs was deployed as a biosensor for the detection of ascorbic acid (AA) for the very first time. A very wide linear range of 5.0 × 10-5-7.0 × 10-3 M, limit of detection (LOD) of 1.19 × 10-5 M along with excellent practical feasibility, storage stability, repeatability and selectivity towards AA electrooxidation showed the excellent synergy between nitrogen-rich GO surface and SnO PPs. The sensitivity (885.54 µAmM-1cm-2) of the catalyst was the most attractive feature, as it was obtained in the presence of 5 and 2-fold higher concentration of UA and DA interfering species respectively.
Collapse
|