1
|
Chen X, Kong L, Mehrez JAA, Fan C, Quan W, Zhang Y, Zeng M, Yang J, Hu N, Su Y, Wei H, Yang Z. Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring. NANO-MICRO LETTERS 2023; 15:149. [PMID: 37286913 PMCID: PMC10247948 DOI: 10.1007/s40820-023-01107-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis. However, ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge. Herein, chemiresistors based on imine-linked covalent organic framework (COF) films with dual-active sites are fabricated to address this issue, which demonstrates an amplified humidity-sensing signal performance. By regulation of monomers and functional groups, these COF films can be pre-engineered to achieve high response, wide detection range, fast response, and recovery time. Under the condition of relative humidity ranging from 13 to 98%, the COFTAPB-DHTA film-based humidity sensor exhibits outstanding humidity sensing performance with an expanded response value of 390 times. Furthermore, the response values of the COF film-based sensor are highly linear to the relative humidity in the range below 60%, reflecting a quantitative sensing mechanism at the molecular level. Based on the dual-site adsorption of the (-C=N-) and (C-N) stretching vibrations, the reversible tautomerism induced by hydrogen bonding with water molecules is demonstrated to be the main intrinsic mechanism for this effective humidity detection. In addition, the synthesized COF films can be further exploited to effectively detect human nasal and oral breathing as well as fabric permeability, which will inspire novel designs for effective humidity-detection devices.
Collapse
Affiliation(s)
- Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lingwei Kong
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jaafar Abdul-Aziz Mehrez
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chao Fan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wenjing Quan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yongwei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wei
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
2
|
Quantitative surface and Hirshfeld surface analysis of nicorandil molecule and further insight into its solubility in several aqueous protic and aprotic cosolvent solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Zhang C, Liu Y, Song F, Wang J. Inter-/intra-molecular interactions, preferential solvation, and dissolution and transfer property for tirofiban in aqueous co-solvent mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Chen J, Zhao H, Farajtabar A, Zhu P, Jouyban A, Acree WE. Equilibrium solubility of amrinone in aqueous co-solvent solutions reconsidered: Quantitative molecular surface, inter/intra-molecular interactions and solvation thermodynamics analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Liu S, Kuznetsov AM, Han W, Masliy AN, Korshin GV. Removal of dimethylarsinic acid (DMA) in the Fe/C system: roles of Fe(II) release, DMA/Fe(II) and DMA/Fe(III) complexation. WATER RESEARCH 2022; 213:118093. [PMID: 35149364 DOI: 10.1016/j.watres.2022.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Methylated arsenic species are ubiquitous in the environment and resistant to removal by conventional treatment technologies. This study addressed this challenge based on the examination of the removal of dimethylarsinic acid (DMA) in a system that combines zerovalent iron (ZVI) and powdered activated carbon (PAC). The removal of DMA in the ZVI/PAC system was compared to that by coagulation, adsorption, electrochemical and Fenton oxidations, and other conventional methods. While only the electrochemical oxidation using a PbO2/Sb-SnO2/Ti anode allowed removing up to 60% DMA at several hours-long treatment times, the removal of DMA in the ZVI/PAC system containing 10 g/L ZVI and 2.5 g/L PAC with an initial pH of 2.0 was 95% for a 30 min reaction time. Specific roles of PAC, ZVI and its oxidation products in DMA removal were examined based on the spectroscopic data and quantum chemical modeling for the DMA/Fe(II) and DMA/Fe(III) systems. These methods demonstrated the formation of moderately strong DMA/Fe(II) and DMA/Fe(III) complexation. These results and relevant kinetic data were interpreted to indicate that the removal of DMA is governed by the rapid generation of Fe2+ ions released as a result of accelerated ZVI corrosion in the galvanic ZVI/PAC microcells and ensuing formation of DMA/ Fe2+ complexes that are readily adsorbed by PAC.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA; Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Andrey M Kuznetsov
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015, Russian Federation
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Alexei N Masliy
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015, Russian Federation
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA.
| |
Collapse
|
6
|
Zhou X, Liu S, Yu H, Xu A, Li J, Sun X, Shen J, Han W, Wang L. Electrochemical oxidation of pyrrole, pyrazole and tetrazole using a TiO2 nanotubes based SnO2-Sb/3D highly ordered macro-porous PbO2 electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Kamath D, Mezyk SP, Minakata D. Elucidating the Elementary Reaction Pathways and Kinetics of Hydroxyl Radical-Induced Acetone Degradation in Aqueous Phase Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7763-7774. [PMID: 29923393 DOI: 10.1021/acs.est.8b00582] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advanced oxidation processes (AOPs) that produce highly reactive hydroxyl radicals are promising methods to destroy aqueous organic contaminants. Hydroxyl radicals react rapidly and nonselectively with organic contaminants and degrade them into intermediates and transformation byproducts. Past studies have indicated that peroxyl radical reactions are responsible for the formation of many intermediate radicals and transformation byproducts. However, complex peroxyl radical reactions that produce identical transformation products make it difficult to experimentally study the elementary reaction pathways and kinetics. In this study, we used ab initio quantum mechanical calculations to identify the thermodynamically preferable elementary reaction pathways of hydroxyl radical-induced acetone degradation by calculating the free energies of the reaction and predicting the corresponding reaction rate constants by calculating the free energies of activation. In addition, we solved the ordinary differential equations for each species participating in the elementary reactions to predict the concentration profiles for acetone and its transformation byproducts in an aqueous phase UV/hydrogen peroxide AOP. Our ab initio quantum mechanical calculations found an insignificant contribution of Russell reaction mechanisms of peroxyl radicals, but significant involvement of HO2• in the peroxyl radical reactions. The predicted concentration profiles were compared with experiments in the literature, validating our elementary reaction-based kinetic model.
Collapse
Affiliation(s)
- Divya Kamath
- Department of Civil and Environmental Engineering , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Stephen P Mezyk
- Department of Chemistry and Biochemistry , California State University , Long Beach , California 90840 , United States
| | - Daisuke Minakata
- Department of Civil and Environmental Engineering , Michigan Technological University , Houghton , Michigan 49931 , United States
| |
Collapse
|
8
|
Chen L, Wu Q, Fan Z, Li H, Li J, Hu W, Liu X, Belskaya NP, Glukhareva T, Zhao B. Design, Synthesis and Biological Evaluation of Isothiazole Based 1,2,4-Trizaole Derivatives. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lai Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University; Tianjin 300071 China
| | - Qifan Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University; Tianjin 300071 China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University; Tianjin 300071 China
| | - Hongpeng Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University; Tianjin 300071 China
| | - Jiwei Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University; Tianjin 300071 China
| | - Wenhao Hu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University; Tianjin 300071 China
| | - Xiumei Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University; Tianjin 300071 China
| | - Nataliya P Belskaya
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin; Yeltsin UrFU, 620002 Ekaterinburg Russia
| | - Tatiana Glukhareva
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin; Yeltsin UrFU, 620002 Ekaterinburg Russia
| | - Bin Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University; Tianjin 300071 China
| |
Collapse
|
9
|
Minakata D, Coscarelli E. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations. Molecules 2018; 23:molecules23030539. [PMID: 29495565 PMCID: PMC6017648 DOI: 10.3390/molecules23030539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
Abstract
Nitrosamines are a group of carcinogenic chemicals that are present in aquatic environments that result from byproducts of industrial processes and disinfection products. As indirect and direct potable reuse increase, the presence of trace nitrosamines presents challenges to water infrastructures that incorporate effluent from wastewater treatment. Ultraviolet (UV) photolysis or UV-based advanced oxidation processes that produce highly reactive hydroxyl radicals are promising technologies to remove nitrosamines from water. However, complex reaction mechanisms involving radicals limit our understandings of the elementary reaction pathways embedded in the overall reactions identified experimentally. In this study, we perform quantum mechanical calculations to identify the hydroxyl radical-induced initial elementary reactions with N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine, and N-nitrosomethylbutylamine. We also investigate the UV-induced NDMA degradation mechanisms. Our calculations reveal that the alkyl side chains of nitrosamine affect the reaction mechanism of hydroxyl radicals with each nitrosamine investigated in this study. Nitrosamines with one- or two-carbon alkyl chains caused the delocalization of the electron density, leading to slower subsequent degradation. Additionally, three major initial elementary reactions and the subsequent radical-involved reaction pathways are identified in the UV-induced NDMA degradation process. This study provides mechanistic insight into the elementary reaction pathways, and a future study will combine these results with the kinetic information to predict the time-dependent concentration profiles of nitrosamines and their transformation products.
Collapse
Affiliation(s)
- Daisuke Minakata
- Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Erica Coscarelli
- Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| |
Collapse
|
10
|
Liu S, Wang Y, Zhou X, Han W, Li J, Sun X, Shen J, Wang L. Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|