1
|
Piao H, Choi G, Jin X, Hwang SJ, Song YJ, Cho SP, Choy JH. Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in Photo- and Electro-Catalysis. NANO-MICRO LETTERS 2022; 14:55. [PMID: 35113289 PMCID: PMC8814173 DOI: 10.1007/s40820-022-00794-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 05/09/2023]
Abstract
The g-C3N4 monolayer in the perfect 2D limit was successfully realized, for the first time, by the well-defined chemical strategy based on the bottom-up process. The most striking evidence was made from Cs-high resolution transmission electron microscopy measurements by observing directly the atomic structure of g-C3N4 unit cell, which was again supported by the corresponding high resolution transmission electron microscopy image simulation results. We demonstrated that the newly prepared g-C3N4 monolayer showed outstanding photocatalytic activity for H2O2 generation as well as excellent electrocatalytic activity for oxygen reduction reaction. The exfoliation of bulk graphitic carbon nitride (g-C3N4) into monolayer has been intensively studied to induce maximum surface area for fundamental studies, but ended in failure to realize chemically and physically well-defined monolayer of g-C3N4 mostly due to the difficulty in reducing the layer thickness down to an atomic level. It has, therefore, remained as a challenging issue in two-dimensional (2D) chemistry and physics communities. In this study, an "atomic monolayer of g-C3N4 with perfect two-dimensional limit" was successfully prepared by the chemically well-defined two-step routes. The atomically resolved monolayer of g-C3N4 was also confirmed by spectroscopic and microscopic analyses. In addition, the experimental Cs-HRTEM image was collected, for the first time, which was in excellent agreement with the theoretically simulated; the evidence of monolayer of g-C3N4 in the perfect 2D limit becomes now clear from the HRTEM image of orderly hexagonal symmetry with a cavity formed by encirclement of three adjacent heptazine units. Compared to bulk g-C3N4, the present g-C3N4 monolayer showed significantly higher photocatalytic generation of H2O2 and H2, and electrocatalytic oxygen reduction reaction. In addition, its photocatalytic efficiency for H2O2 production was found to be the best for any known g-C3N4 nanomaterials, underscoring the remarkable advantage of monolayer formation in optimizing the catalyst performance of g-C3N4.
Collapse
Affiliation(s)
- Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Jae Song
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Sung-Pyo Cho
- National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul, 08826, Republic of Korea.
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon, 16229, Republic of Korea.
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| |
Collapse
|
2
|
Kwon NH, Jin X, Kim S, Kim H, Hwang S. Multilayer Conductive Hybrid Nanosheets as Versatile Hybridization Matrices for Optimizing the Defect Structure, Structural Ordering, and Energy-Functionality of Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103042. [PMID: 34761539 PMCID: PMC8805630 DOI: 10.1002/advs.202103042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Indexed: 05/16/2023]
Abstract
The hybridization of conductive nanospecies has garnered significant research interest because of its high efficacy in improving the diverse functionalities of nanostructured materials. In this study, a novel synthetic strategy is developed to optimize the defect structure, structural ordering, and energy-related functionality of nanostructured-materials by employing a multilayer multicomponent two-dimenstional (2D) graphene/metal oxide/graphene nanosheet (NS) as a versatile hybridization matrix. The hybridization of the robust trilayer, polydiallyldiammonium (PDDA)-anchored reduced-graphene oxide (prGO)/metal oxide/prGO NS effectively enhance the structural ordering and porosity of the hybridized MoS2 /MnO2 NS through suppression of defect formation and tight stacking. In comparison with monolayer rGO/RuO2 NS-based homologs, the 2D superlattice trilayer prGO/RuO2 /prGO NS hybrids deliver better functionalities as a hydrogen evolution electrocatalyst and as a supercapacitor electrode, demonstrating the merits of hybridization with multilayer NSs. The advantages of using multilayer multicomponent conductive NSs as hybridization matrices arise from the enhancement of charge and mass transport through the layer flattening or defect suppression of the hybridized NSs and the increase in porosity, as evidenced by density functional theory calculations. Finally, the universal utility of multilayer NSs is confirmed by investigating the strong effect of the stacking order on the electrocatalytic functionality of MoS2 /rGO/RuO2 films fabricated through layer-by-layer deposition.
Collapse
Affiliation(s)
- Nam Hee Kwon
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Xiaoyan Jin
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Se‐Jun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daehak‐ro 291Yuseong‐guDaejeon34141Republic of Korea
| | - Hyungjun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daehak‐ro 291Yuseong‐guDaejeon34141Republic of Korea
| | - Seong‐Ju Hwang
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
3
|
Jin X, Gu TH, Kwon NH, Hwang SJ. Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005922. [PMID: 33890336 DOI: 10.1002/adma.202005922] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 05/05/2023]
Abstract
2D nanostructured materials, including inorganic and graphene nanosheets, have evoked plenty of scientific research activity due to their intriguing properties and excellent functionalities. The complementary advantages and common 2D crystal shapes of inorganic and graphene nanosheets render their homogenous mixtures powerful building blocks for novel high-performance functional hybrid materials. The nanometer-level thickness of 2D inorganic/graphene nanosheets allows the achievement of unusually strong electronic couplings between sheets, leading to a remarkable improvement in preexisting functionalities and the creation of unexpected properties. The synergetic merits of atomically coupled 2D inorganic-graphene nanosheets are presented here in the exploration of novel heterogeneous functional materials, with an emphasis on their critical roles as hybridization building blocks, interstratified sheets, additives, substrates, and deposited monolayers. The great flexibility and controllability of the elemental compositions, defect structures, and surface natures of inorganic-graphene nanosheets provide valuable opportunities for exploring high-performance nanohybrids applicable as electrodes for supercapacitors and rechargeable batteries, electrocatalysts, photocatalysts, and water purification agents, to give some examples. An outlook on future research perspectives for the exploitation of emerging 2D nanosheet-based hybrid materials is also presented along with novel synthetic strategies to maximize the synergetic advantage of atomically mixed 2D inorganic-graphene nanosheets.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Ha Gu
- Department of Chemistry and Nanoscience, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Nam Hee Kwon
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Abstract
Abstract
Two-dimensional (2D) materials have been widely investigated for the last few years, introducing nanosheets and ultrathin films. The often superior electrical, optical and mechanical properties in contrast to their three-dimensional (3D) bulk counterparts offer a promising field of opportunities. Especially new research fields for already existing and novel applications are opened by downsizing and improving the materials at the same time. Some of the most promising application fields are namely supercapacitors, electrochromic devices, (bio-) chemical sensors, photovoltaic devices, thermoelectrics, (photo-) catalysts and membranes. The role of oxides in this field of materials deserves a closer look due to their availability, durability and further advantages. Here, recent progress in oxidic nanosheets is highlighted and the benefit of 2D oxides for applications discussed in-depth. Therefore, different synthesis techniques and microstructures are compared more closely.
Collapse
Affiliation(s)
- Richard Hinterding
- Leibniz University Hannover , Institute of Physical Chemistry and Electrochemistry , Callinstraße 3A , D-30176 Hannover , Germany
| | - Armin Feldhoff
- Leibniz University Hannover , Institute of Physical Chemistry and Electrochemistry , Callinstraße 3A , D-30176 Hannover , Germany
| |
Collapse
|
6
|
Oh SM, Patil SB, Jin X, Hwang SJ. Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System. Chemistry 2018; 24:4757-4773. [DOI: 10.1002/chem.201704284] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Seung Mi Oh
- Center for Hybrid Interfacial Chemical Structure; Department of Chemistry and Nanoscience; College of Natural Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Sharad B. Patil
- Center for Hybrid Interfacial Chemical Structure; Department of Chemistry and Nanoscience; College of Natural Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Xiaoyan Jin
- Center for Hybrid Interfacial Chemical Structure; Department of Chemistry and Nanoscience; College of Natural Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Seong-Ju Hwang
- Center for Hybrid Interfacial Chemical Structure; Department of Chemistry and Nanoscience; College of Natural Sciences; Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
7
|
Gan T, Wang Z, Wang Y, Li X, Sun J, Liu Y. Flexible graphene oxide−wrapped SnO2 hollow spheres with high electrochemical sensing performance in simultaneous determination of 4−aminophenol and 4−chlorophenol. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|