1
|
Cui D, Wang R, Qian C, Shen H, Xia J, Sun K, Liu H, Guo C, Li J, Yu F, Bao W. Achieving High Performance Electrode for Energy Storage with Advanced Prussian Blue-Drived Nanocomposites-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1430. [PMID: 36837059 PMCID: PMC9962687 DOI: 10.3390/ma16041430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Recently, Prussian blue analogues (PBAs)-based anode materials (oxides, sulfides, selenides, phosphides, borides, and carbides) have been extensively investigated in the field of energy conversion and storage. This is due to PBAs' unique properties, including high theoretical specific capacity, environmental friendly, and low cost. We thoroughly discussed the formation of PBAs in conjunction with other materials. The performance of composite materials improves the electrochemical performance of its energy storage materials. Furthermore, new insights are provided for the manufacture of low-cost, high-capacity, and long-life battery materials in order to solve the difficulties in different electrode materials, combined with advanced manufacturing technology and principles. Finally, PBAs and their composites' future challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Dingyu Cui
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ronghao Wang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chengfei Qian
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hao Shen
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jingjie Xia
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
| | - He Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Cong Guo
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jingfa Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Feng Yu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Weizhai Bao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
2
|
Wu S, Xu X, Yan X, Zhao H, Liu C, Wang Y, Su Q, Yin F, Yang Q. Sea urchin-like CoNi 2S 4materials derived from nickel hexamyanocobaltate for high-performance asymmetric hybrid supercapacitor. NANOTECHNOLOGY 2022; 33:485404. [PMID: 35803093 DOI: 10.1088/1361-6528/ac7fa6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, a mild chemical precipitation method and simple hydrothermal treatment of the nickel hexamyanocobaltate precursor strategy are developed to prepare a sea urchin-like CoNi2S4compound with remarkable specific capacity and excellent cycling stability. The prepared CoNi2S4has an outstanding specific capacity of 149.1 mA h g-1at 1 A g-1and an initial capacity of 83.1% after 3000 cycles at 10 A g-1. Moreover, the porous carbon nanospheres (PCNs) with exhibit cycling stability (94.7% of initial specific capacity after 10 000 cycles at 10 A g-1) are selected as negative electrode to match CoNi2S4positive electrode for assembly of CoNi2S4//PCNs asymmetric supercapacitor (ASC). Satisfactorily, the as-assembled CoNi2S4//PCNs ASC exhibits an impressive energy density of 41.6 Wh kg-1at 797 W kg-1, as well as the suitable capacity retention of 82.8% after 10 000 cycles. The superior properties of the device demonstrated that the as-prepared material is potential energy storage material.
Collapse
Affiliation(s)
- Shang Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Xin Xu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Xiangtao Yan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Huanlei Zhao
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Chaoyang Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Yanbin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Fenping Yin
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730030, People's Republic of China
| |
Collapse
|
3
|
Construction of advanced zeolitic imidazolate framework derived cobalt sulfide/MXene composites as high-performance electrodes for supercapacitors. J Colloid Interface Sci 2022; 615:282-292. [DOI: 10.1016/j.jcis.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
4
|
Kajana T, Pirashanthan A, Velauthapillai D, Yuvapragasam A, Yohi S, Ravirajan P, Senthilnanthanan M. Potential transition and post-transition metal sulfides as efficient electrodes for energy storage applications: review. RSC Adv 2022; 12:18041-18062. [PMID: 35800326 PMCID: PMC9208027 DOI: 10.1039/d2ra01574a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/29/2022] [Indexed: 12/25/2022] Open
Abstract
Electrochemical energy storage has attracted much attention due to the common recognition of sustainable energy development. Transition metal sulfides and post-transition metal sulfides have been intensively been focused on due to their potential as electrode materials for energy storage applications in different types of capacitors such as supercapacitors and pseudocapacitors, which have high power density and long cycle life. Herein, the physicochemical properties of transition and post-transition metal sulfides, their typical synthesis, structural characterization, and electrochemical energy storage applications are reviewed. Various perspectives on the design and fabrication of transition and post-transition metal sulfides-based electrode materials having capacitive applications are discussed. This review further discusses various strategies to develop transition and/or post-transition metal sulfide heterostructured electrode-based self-powered photocapacitors with high energy storage efficiencies. Electrochemical energy storage has attracted much attention due to the common recognition of sustainable energy development.![]()
Collapse
Affiliation(s)
- Thirunavukarasu Kajana
- Clean Energy Research Laboratory, Department of Physics, University of Jaffna, Jaffna, Sri Lanka
- Department of Chemistry, University of Jaffna, Jaffna, Sri Lanka
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Arumugam Pirashanthan
- Clean Energy Research Laboratory, Department of Physics, University of Jaffna, Jaffna, Sri Lanka
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Akila Yuvapragasam
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | | | - Punniamoorthy Ravirajan
- Clean Energy Research Laboratory, Department of Physics, University of Jaffna, Jaffna, Sri Lanka
| | | |
Collapse
|
5
|
Gajraj V, Azmi R, Indris S, Mariappan CR. Boosting the Multifunctional Properties of MnCo
2
O
4
‐MnCo
2
S
4
Heterostructure for Portable All‐Solid‐State Symmetric Supercapacitor, Methanol Oxidation and Hydrogen Evolution Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202103138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- V. Gajraj
- Department of Physics National Institute of Technology Kurukshetra Haryanay 136 119 India
- Research & Development cell Uttaranchal University Dehradun Uttarakhand 248001 India
| | - R. Azmi
- Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - S. Indris
- Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - C. R. Mariappan
- Department of Physics National Institute of Technology Kurukshetra Haryanay 136 119 India
- Department of Physics National Institute of Technology-Puducherry Karaikal 609609 India
| |
Collapse
|
6
|
Du X, Qin Z, Li Z. Free-Standing rGO-CNT Nanocomposites with Excellent Rate Capability and Cycling Stability for Na 2SO 4 Aqueous Electrolyte Supercapacitors. NANOMATERIALS 2021; 11:nano11061420. [PMID: 34071157 PMCID: PMC8229913 DOI: 10.3390/nano11061420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022]
Abstract
Facing the increasing demand for various renewable energy storage devices and wearable and portable energy storage systems, the research on electrode materials with low costs and high energy densities has attracted great attention. Herein, free-standing rGO-CNT nanocomposites have been successfully synthesized by a facile hydrothermal method, in which the hierarchical porous network nanostructure is synergistically assembled by rGO nanosheets and CNT with interlaced network distribution. The rGO-CNT composite electrodes with synergistic enhancement of rGO and CNT exhibit high specific capacitance, excellent rate capability, exceptional conductivity and outstanding long-term cycling stability, especially for the optimal rGO-CNT30 electrode. Applied to a symmetric supercapacitor systems (SSS) assembled with an rGO-CNT30 electrode and with 1 M Na2SO4 aqueous solution as the electrolyte, the SSS possesses a high energy density of 12.29 W h kg−1 and an outstanding cycling stability, with 91.42% of initial specific capacitance after 18,000 cycles. Results from these electrochemical properties suggest that the rGO-CNT30 nanocomposite electrode is a promising candidate for the development of flexible and lightweight high-performance supercapacitors.
Collapse
Affiliation(s)
- Xiaohan Du
- School of Physics & Electronic Engineering, North China University of Water Resources & Electric Power, Zhengzhou 450045, China; (X.D.); (Z.Q.)
| | - Zhen Qin
- School of Physics & Electronic Engineering, North China University of Water Resources & Electric Power, Zhengzhou 450045, China; (X.D.); (Z.Q.)
| | - Zijiong Li
- School of Physics & Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
7
|
Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AH, Awed AS, Ashour AH, Rooney DW. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:375-439. [DOI: 10.1007/s10311-020-01075-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 09/02/2023]
Abstract
AbstractSupercapacitors are increasingly used for energy conversion and storage systems in sustainable nanotechnologies. Graphite is a conventional electrode utilized in Li-ion-based batteries, yet its specific capacitance of 372 mA h g−1 is not adequate for supercapacitor applications. Interest in supercapacitors is due to their high-energy capacity, storage for a shorter period and longer lifetime. This review compares the following materials used to fabricate supercapacitors: spinel ferrites, e.g., MFe2O4, MMoO4 and MCo2O4 where M denotes a transition metal ion; perovskite oxides; transition metals sulfides; carbon materials; and conducting polymers. The application window of perovskite can be controlled by cations in sublattice sites. Cations increase the specific capacitance because cations possess large orbital valence electrons which grow the oxygen vacancies. Electrodes made of transition metal sulfides, e.g., ZnCo2S4, display a high specific capacitance of 1269 F g−1, which is four times higher than those of transition metals oxides, e.g., Zn–Co ferrite, of 296 F g−1. This is explained by the low charge-transfer resistance and the high ion diffusion rate of transition metals sulfides. Composites made of magnetic oxides or transition metal sulfides with conducting polymers or carbon materials have the highest capacitance activity and cyclic stability. This is attributed to oxygen and sulfur active sites which foster electrolyte penetration during cycling, and, in turn, create new active sites.
Collapse
|
8
|
Metal organic framework derived CoS2@Ni(OH)2 core-shell structure nanotube arrays for high-performance flexible hybrid supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Kumbhar VS, Chodankar NR, Lee K, Kim DH. Insights into the interfacial nanostructuring of NiCo2S4 and their electrochemical activity for ultra-high capacity all-solid-state flexible asymmetric supercapacitors. J Colloid Interface Sci 2019; 557:423-437. [DOI: 10.1016/j.jcis.2019.08.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022]
|
10
|
Gao M, Le K, Wang G, Wang Z, Wang F, Liu W, Liu J. Core-shell Cu2-xS @ CoS2 heterogeneous nanowire array with superior electrochemical performance for supercapacitor application. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134839] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Nai J, Lou XWD. Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1706825. [PMID: 30155969 DOI: 10.1002/adma.201706825] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/03/2018] [Indexed: 05/27/2023]
Abstract
Due to their special structural characteristics, hollow structures grant fascinating physicochemical properties and widespread applications, especially in electrochemical energy storage and conversion. Recently, the research of Prussian blue (PB) and its analog (PBA) related nanomaterials has emerged and has drawn considerable attention because of their low cost, facile preparation, intrinsic open framework, and tunable composition. Here, the recent progress in the study of PB- and PBA-based hollow structures for electrochemical energy storage and conversion are summarized and discussed. First, some remarkable examples in the synthesis of hollow structures from PB- and PBA-based materials are illustrated in terms of the structural architectures, i.e., closed single-shelled hollow structures, open hollow structures, and complex hollow structures. Thereafter, their applications as potential electrode materials for lithium-/sodium-ion batteries, hybrid supercapacitors, and electrocatalysis are demonstrated. Finally, the current achievements in this field together with the limits and urgent challenges are summarized. Some perspectives on the potential solutions and possible future trends are also provided.
Collapse
Affiliation(s)
- Jianwei Nai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
12
|
Zhou Y, Li N, Sun L, Yu X, Liu C, Yang L, Zhang S, Wang Z. Multi-layer-stacked Co 9S 8 micro/nanostructure directly anchoring on carbon cloth as a flexible electrode in supercapacitors. NANOSCALE 2019; 11:7457-7464. [PMID: 30941382 DOI: 10.1039/c9nr00828d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rational design and synthesis of electrode materials containing uniformly stacked lamella structures with high surface areas are attractive for efficient storage of electrochemical energy. In this work, Co9S8 clusters with a uniformly stacked lamella structure was directly anchored onto carbon cloth (CC) by an easy-to-implement chemical solution processing method, which involves the homogeneous growth of the CoCO3 precursor, promoting the formation of nanosheets during the subsequent sulfurization process. Due to the conductive substrate (CC) and special multi-layer micro/nanostructure (Co9S8), the flexible Co9S8/CC electrode, which can be tailored, bent and twisted arbitrarily without affecting its electrochemical properties, also exhibits excellent electrochemical properties with a high specific capacitance (1475.4 F g-1 at 1 A g-1), a good rate capacity (80.2% retention at 20 A g-1) and excellent cycling stability (92.9% retention over 5000 cycles). In addition, the assembled solid-state asymmetric supercapacitor device containing the fabricated Co9S8 as the positive electrode and activated carbon as the negative electrode, also exhibits a high energy density of 20.3 W h kg-1 at a power density of 22 796.1 W kg-1 and a high energy density of 33.2 W h kg-1 at a power density of 817.9 W kg-1. Because of its good electrochemical properties and flexibility, the flexible Co9S8/CC electrode material is very promising to be used in flexible supercapacitors and wearable electronic technology.
Collapse
Affiliation(s)
- Yongqiang Zhou
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yao H, Zhang F, Zhang G, Yang Y. A new hexacyanoferrate nanosheet array converted from copper oxide as a high-performance binder-free energy storage electrode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Wei C, Chen Q, Cheng C, Liu R, Zhang Q, Zhang L. Mesoporous nickel cobalt manganese sulfide yolk–shell hollow spheres for high-performance electrochemical energy storage. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00173e] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesoporous Ni–Co–Mn sulfide yolk–shell hollow spheres have been prepared via a self-template route and show excellent electrochemical performance in supercapacitors.
Collapse
Affiliation(s)
- Chengzhen Wei
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- People's Republic of China
| | - Qingyun Chen
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- People's Republic of China
| | - Cheng Cheng
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- People's Republic of China
| | - Ran Liu
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- People's Republic of China
| | - Qiang Zhang
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- People's Republic of China
| | - Liping Zhang
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- People's Republic of China
| |
Collapse
|
15
|
Sun Z, Yang X, Lin H, Zhang F, Wang Q, Qu F. Bifunctional iron disulfide nanoellipsoids for high energy density supercapacitor and electrocatalytic oxygen evolution applications. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01230j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FeS2, prepared using a rapid microwave assisted method, exhibits excellent electrochemical performance for supercapacitor and OER applications.
Collapse
Affiliation(s)
- Zhiqin Sun
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Xue Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Qian Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| |
Collapse
|
16
|
Ma X, Wang C, Wang G, Li G, Li S, Wang J, Song Y. Three narrow band-gap semiconductors modified Z-scheme photocatalysts, Er3+:Y3Al5O12@NiGa2O4/(NiS, CoS2 or MoS2)/Bi2Sn2O7, for enhanced solar-light photocatalytic conversions of nitrite and sulfite. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
General self-template synthesis of transition-metal oxide microspheres and their excellent charge storage properties. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Lai C, Sun Y, Zhang X, Yang H, Kang W, Lin B. Advanced flower-like Co3O4 with ultrathin nanosheets and 3D rGO aerogels as double ion-buffering reservoirs for asymmetric supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review. NANOMATERIALS 2018; 8:nano8040256. [PMID: 29671823 PMCID: PMC5923586 DOI: 10.3390/nano8040256] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
Abstract
Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed.
Collapse
|