1
|
Li D, Xiang R, Yu F, Zeng J, Zhang Y, Zhou W, Liao L, Zhang Y, Tang D, Zhou H. In Situ Regulating Cobalt/Iron Oxide-Oxyhydroxide Exchange by Dynamic Iron Incorporation for Robust Oxygen Evolution at Large Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305685. [PMID: 37747155 DOI: 10.1002/adma.202305685] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The key dilemma for green hydrogen production via electrocatalytic water splitting is the high overpotential required for anodic oxygen evolution reaction (OER). Co/Fe-based materials show superior catalytic OER activity to noble metal-based catalysts, but still lag far behind the state-of-the-art Ni/Fe-based catalysts probably due to undesirable side segregation of FeOOH with poor conductivity and unsatisfied structural durability under large current density. Here, a robust and durable OER catalyst affording current densities of 500 and 1000 mA cm-2 at extremely low overpotentials of 290 and 304 mV in base is reported. This catalyst evolves from amorphous bimetallic FeOOH/Co(OH)2 heterostructure microsheet arrays fabricated by a facile mechanical stirring strategy. Especially, in situ X-ray photoelectron spectroscopy (XPS) and Raman analysis decipher the rapid reconstruction of FeOOH/Co(OH)2 into dynamically stable Co1-x Fex OOH active phase through in situ iron incorporation into CoOOH, which perform as the real active sites accelerating the rate-determining step supported by density functional theory calculations. By coupling with MoNi4 /MoO2 cathode, the self-assembled alkaline electrolyzer can deliver 500 mA cm-2 at a low cell voltage of 1.613 V, better than commercial IrO2 (+) ||Pt/C(-) and most of reported transition metal-based electrolyzers. This work provides a feasible strategy for the exploration and design of industrial water-splitting catalysts for large-scale green hydrogen production.
Collapse
Affiliation(s)
- Dongyang Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Rong Xiang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Fang Yu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Jinsong Zeng
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Yong Zhang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Weichang Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Liling Liao
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Yan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, and Department of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Dongsheng Tang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
2
|
Wang X, Hao L, Du R, Wang H, Dong J, Zhang Y. Synthesis of unique three-dimensional CoMn 2O 4@Ni(OH) 2 nanocages via Kirkendall effect for non-enzymatic glucose sensing. J Colloid Interface Sci 2024; 653:730-740. [PMID: 37742432 DOI: 10.1016/j.jcis.2023.09.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Transition metal oxides / hydroxides, which have the advantages of wide distribution, low price, low toxicity, and stable chemical properties, have attracted much attention from researchers. Therefore, this work reports the construction of the unique CoMn2O4 nanocages assisted by the Kirkendall effect, and worm-like Ni(OH)2 nanoparticles were grown on the surface via hydrothermal method, the final product CoMn2O4@Ni(OH)2 nanocages were applied to construct efficient and sensitive non-enzymatic glucose electrochemical sensing. The stable three-dimensional hollow CoMn2O4 nanocages structure, not only can provide a wider specific surface area and more abundant active sites, its porous structure also can effectively inhibit the aggregation of nanoparticles, increase the ion diffusion path, shorten the electron transport distance, and improve the electrical conductivity. Loading Ni(OH)2 nanoparticles on the CoMn2O4 nanocages can increase catalytic sites, and further strengthen the electrocatalytic performance. Due to the good synergistic effect between CoMn2O4 and Ni(OH)2, CoMn2O4@Ni(OH)2 nanocages electrochemical sensor can achieve sensitive and rapid detection of trace glucose, with excellent linear range (8.5-1830.5 μM), low limit of detection (0.264 μM), high sensitivity of 0.00646 μA mM-1 cm-2, and outstanding repeatability. More importantly, the sensor has been successfully applied to the determination of blood glucose in human serum with good recoveries (95.64-104.3 %). This work provides a novel scheme for blood glucose detection and expands the application of transition metal oxides / hydroxides in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Xiaokun Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001 Baoding, PR China
| | - Ruixuan Du
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Huan Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| | - Jiangxue Dong
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| | - Yufan Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
3
|
Du X, Lin Z, Wang X, Zhang K, Hu H, Dai S. Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors. Molecules 2023; 28:6432. [PMID: 37687261 PMCID: PMC10563087 DOI: 10.3390/molecules28176432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Currently, energy storage systems are of great importance in daily life due to our dependence on portable electronic devices and hybrid electric vehicles. Among these energy storage systems, hybrid supercapacitor devices, constructed from a battery-type positive electrode and a capacitor-type negative electrode, have attracted widespread interest due to their potential applications. In general, they have a high energy density, a long cycling life, high safety, and environmental friendliness. This review first addresses the recent developments in state-of-the-art electrode materials, the structural design of electrodes, and the optimization of electrode performance. Then we summarize the possible classification of hybrid supercapacitor devices, and their potential applications. Finally, the fundamental theoretical aspects, charge-storage mechanism, and future developing trends are discussed. This review is intended to provide future research directions for the next generation of high-performance energy storage devices.
Collapse
Affiliation(s)
- Xiaobing Du
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Zhuanglong Lin
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxia Wang
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Kaiyou Zhang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hao Hu
- School of Material Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuge Dai
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Ren G, Liu B, Liu L, Hu M, Zhu J, Xu X, Jing P, Wu J, Zhang J. Regulating the Electronic Structure of Ni Sites in Ni(OH) 2 by Ce Doping and Cu(OH) 2 Coupling to Boost 5-Hydroxymethylfurfural Oxidation Performance. Inorg Chem 2023. [PMID: 37490478 DOI: 10.1021/acs.inorgchem.3c01774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biomass is a sustainable and renewable resource that can be converted into valuable chemicals, reducing the demand for fossil energy. 5-Hydroxymethylfurfural (HMF), as an important biomass platform molecule, can be converted to high-value-added 2,5-furandicarboxylic acid (FDCA) via a green and renewable electrocatalytic oxidation route under mild reaction conditions, but efficient electrocatalysts are still lacking. Herein, we rationally fabricate a novel self-supported electrocatalyst of core-shell-structured copper hydroxide nanowires@cerium-doped nickel hydroxide nanosheets composite nanowires on a copper mesh (CuH_NWs@Ce:NiH_NSs/Cu) for electrocatalytically oxidizing HMF to FDCA. The integrated configuration of composite nanowires with rich interstitial spaces between them facilitates fast mass/electron transfer, improved conductivity, and complete exposure of active sites. The doping of Ce ions in nickel hydroxide nanosheets (NiH_NSs) and the coupling of copper hydroxide nanowires (CuH_NWs) regulate the electronic structure of the Ni active sites and optimize the adsorption strength of the active sites to the reactant, meanwhile promoting the generation of strong oxidation agents of Ni3+ species, thereby resulting in improved electrocatalytic activity. Consequently, the optimal CuH_NWs@Ce:NiH_NSs/Cu electrocatalyst is able to achieve a HMF conversion of 98.5% with a FDCA yield of 97.9% and a Faradaic efficiency of 98.0% at a low constant potential of 1.45 V versus reversible hydrogen electrode. Meanwhile, no activity attenuation can be found after 15 successive cycling tests. Such electrocatalytic performance suppresses most of the reported Cu-based and Ni-based electrocatalysts. This work highlights the importance of structure and doping engineering strategies for the rational fabrication of high-performance electrocatalysts for biomass upgrading.
Collapse
Affiliation(s)
- Guangxin Ren
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China
| | - Baocang Liu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China
| | - Liang Liu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China
| | - Minghao Hu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China
| | - Junpeng Zhu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China
| | - Xuan Xu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China
| | - Peng Jing
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China
| | - Jinfang Wu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China
- Inner Mongolia Academy of Science and Technology, 70 Zhaowuda Road, Hohhot 010010, P. R. China
- Inner Mongolia Guangheyuan Nano High-tech Co. LTD, Ejin Horo Banner, Ordos 017299, P. R. China
| |
Collapse
|
5
|
Lokhande PE, Chavan US, Pandey A. Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00057-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Huang C, Hu Y, Jiang S, Chen HC. Amorphous nickel-based hydroxides with different cation substitutions for advanced hybrid supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134936] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Madern N, Monnier J, Cachet‐Vivier C, Zhang J, Bastide S, Paul‐Boncour V, Latroche M. Anisotropic Nanoporous Nickel Obtained through the Chemical Dealloying of Y
2
Ni
7
for the Comprehension of Anode Surface Chemistry of Ni‐
M
H Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201901281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nicolas Madern
- CNRS, Univ Paris Est Creteil, ICMPE 2 rue Henri Dunant F-94320 THIAIS France
| | - Judith Monnier
- CNRS, Univ Paris Est Creteil, ICMPE 2 rue Henri Dunant F-94320 THIAIS France
| | | | - Junxian Zhang
- CNRS, Univ Paris Est Creteil, ICMPE 2 rue Henri Dunant F-94320 THIAIS France
| | - Stéphane Bastide
- CNRS, Univ Paris Est Creteil, ICMPE 2 rue Henri Dunant F-94320 THIAIS France
| | | | - Michel Latroche
- CNRS, Univ Paris Est Creteil, ICMPE 2 rue Henri Dunant F-94320 THIAIS France
| |
Collapse
|
8
|
Nithyayini K, Harish M, Nagashree K. Electrochemical detection of nitrite at NiFe2O4 nanoparticles synthesised by solvent deficient method. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Huang M, Xu Z, Hou C, Wang S, Zhuang Y, Jia HL, Guan M. Intermediate phase α-β-Ni1-xCox(OH)2/carbon nanofiber hybrid material for high-performance nickel-zinc battery. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Pazhamalai P, Krishnamoorthy K, Sahoo S, Mariappan VK, Kim SJ. Supercapacitive properties of amorphous MoS3 and crystalline MoS2 nanosheets in an organic electrolyte. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00623k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amorphous-MoS3 and crystalline-MoS2 prepared via thermal decomposition of ammonium tetrathiomolybdate and their electrochemical energy-storage properties reveals better capacitive and charge-transfer nature for MoS2 SSC over amorphous-MoS3 SSC.
Collapse
Affiliation(s)
- Parthiban Pazhamalai
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| | - Karthikeyan Krishnamoorthy
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| | - Surjit Sahoo
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| | - Vimal Kumar Mariappan
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| | - Sang-Jae Kim
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- Republic of Korea
| |
Collapse
|
11
|
Gao Z, Wang Z, Chang J, Chen L, Wu D, Xu F, Wang X, Jiang K. Micelles directed preparation of ternary cobalt hydroxide carbonate-nickel hydroxide-reduced graphene oxide composite porous nanowire arrays with superior faradic capacitance performance. J Colloid Interface Sci 2019; 534:563-573. [DOI: 10.1016/j.jcis.2018.09.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/29/2022]
|
12
|
Freestanding two-dimensional Ni(OH)2 thin sheets assembled by 3D nanoflake array as basic building units for supercapacitor electrode materials. J Colloid Interface Sci 2018; 509:163-170. [DOI: 10.1016/j.jcis.2017.08.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/23/2022]
|