1
|
Deng W, Lv X, Xu Z, Zhang Q, Zhao M, Huang X. Recovery of heavy metal complexes from wastewaters: A critical review of mechanisms and technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125339. [PMID: 40239352 DOI: 10.1016/j.jenvman.2025.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Heavy metal complexes (HMCs) pose significant ecological challenges while also holding attractive economic value. This review comprehensively summarizes advanced techniques for recovering HMCs from wastewater, including reductive recovery, oxidative decomplexation-recovery, and non-redox separation. Physical and chemical separation approaches utilize specific properties of metal complexes for efficient segregation. Specifically, we explore oxidative decomposition techniques, emphasizing the underlying mechanisms and practical application for selective and non-selective decomplexation techniques. The crucial role of cathodic potential on the efficiency and selectivity of electrochemical reduction processes is also examined. In addition, a comprehensive cost assessment, including energy consumption, associated with these recovering processes is investigated, and opinions on the inadequacy of current studies are provided. Overall, this review uniquely integrates findings on selective physical separation, oxidation, and reduction processes as well as the cost assessments for these techniques, providing a novel and comprehensive perspective on heavy metal recovery. It aims to bridge existing gaps in literature and advance the development of effective recovery methodologies for HMCs.
Collapse
Affiliation(s)
- Wei Deng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; School of Engineering, University of Northern British Columbia, 3333 University Way, V2N 4Z9, British Columbia, Canada
| | - Xiaoli Lv
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhe Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Qingrui Zhang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Min Zhao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Nizeyimana JC, Ndagijimana P, Khan J, Xiangru L, Twagirayezu G, Manzi HP, Irumva O, Yu CP, Hu A, Lin S. A hybrid system for Nickel ions removal from synthesized wastewater using adsorption assisted with electrocoagulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28321-28340. [PMID: 38538998 DOI: 10.1007/s11356-024-33082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 04/30/2024]
Abstract
The presence of heavy metal ions in water environments has raised significant concerns, necessitating practical solutions for their complete removal. In this study, a combination of adsorption and electrocoagulation (ADS + EC) techniques was introduced as an efficient approach for removing high concentrations of nickel ions (Ni2+) from aqueous solutions, employing low-cost sunflower seed shell biochar (SSSB). The combined techniques demonstrated superior removal efficiency compared to individual methods. The synthesized SSSB was characterized using SEM, FT-IR, XRD, N2-adsorption-desorption isotherms, XPS, and TEM. Batch processes were optimized by investigating pH, adsorbent dosage, initial nickel concentration, electrode effects, and current density. An aluminum (Al) electrode electrocoagulated particles and removed residual Ni2+ after adsorption. Kinetic and isotherm models examined Ni2+ adsorption and electrocoagulation coupling with SSSB-based adsorbent. The results indicated that the kinetic data fit well with a pseudo-second-order model, while the experimental equilibrium adsorption data conformed to a Langmuir isotherm under optimized conditions. The maximum adsorption capacity of the activated sunflower seed shell was determined to be 44.247 mg.g-1. The highest nickel ion removal efficiency of 99.98% was observed at initial pH values of 6.0 for ADS and 4.0 for ADS/EC; initial Ni2+ concentrations of 30.0 mg/L and 1.5 g/L of SSSB; initial current densities of 0.59 mA/cm2 and 1.32 kWh/m3 were also found to be optimal. The mechanisms involved in the removal of Ni2+ from wastewater were also examined in this research. These findings suggest that the adsorption-assisted electrocoagulation technique has a remarkable capacity for the cost-effective removal of heavy metals from various wastewater sources.
Collapse
Affiliation(s)
- Jean Claude Nizeyimana
- School of Environment Northeast, Normal University, Changchun, 130117, China
- CAS Key Laboratory of Urban Pollutant Conversion of Urban Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 136102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Junaid Khan
- School of Environment Northeast, Normal University, Changchun, 130117, China
| | - Liu Xiangru
- School of Environment Northeast, Normal University, Changchun, 130117, China
| | - Gratien Twagirayezu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, Guizhou, China
| | - Habasi Patrick Manzi
- CAS Key Laboratory of Urban Pollutant Conversion of Urban Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 136102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Olivier Irumva
- School of Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion of Urban Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 136102, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion of Urban Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 136102, China
| | - Shanshan Lin
- School of Environment Northeast, Normal University, Changchun, 130117, China.
| |
Collapse
|
3
|
Li Y, Wang S, Guo H, Zhou J, Liu Y, Wang T, Yin X. Synchronous removal of oxytetracycline and Cr(Ⅵ) in Fenton-like photocatalysis process driven by MnFe 2O 4/g-C 3N 4: Performance and mechanisms. CHEMOSPHERE 2024; 352:141371. [PMID: 38346517 DOI: 10.1016/j.chemosphere.2024.141371] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Complex wastewater has more complicated toxicity and potential harm to organisms, and synchronous REDOX of complex pollutants in wastewater has always been a bottleneck in the development of advanced oxidation technology. Herein, a Fenton-like photocatalytic system (MnFe2O4/g-C3N4 heterojunction composites) was established to simultaneously remove oxytetracycline (OTC) and Cr(Ⅵ) in this study. The MnFe2O4/g-C3N4 heterojunction composites exhibited outstanding catalytic performances for OTC and Cr(Ⅵ) removal, and more than 90% of OTC and nearly 100% of Cr(Ⅵ) were simultaneously removed within 1 min photocatalysis. The photo-generared electrons and holes played significant roles in Cr(Ⅵ) reduction and OTC degradation, respectively. Moreover, the heterojunction formed between g-C3N4 and MnFe2O4 effectively accelerated the separation and migration of photogenerated carriers. The OTC degradation was mainly initiated by cracking of benzene rings, degradation of substituents, and removal of groups such as -OH, -NH2, -CH3, and -CONH2, resulting in generation of small molecular substances; Cr(Ⅲ) was the main reduction product of Cr(Ⅵ). Meanwhile, the MnFe2O4/g-C3N4 heterojunction composites also exhibited excellent stability and reusability in removal of OTC and Cr(Ⅵ).
Collapse
Affiliation(s)
- Yujuan Li
- Ningxia Academy of Environmental Sciences (Co., LTD.), Yinchuan, 750000, China
| | - Sha Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Yue Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
4
|
Zhang J, Liu Y, Li J, Wang K, Zhao X, Liu X. Enhanced recovery of phosphorus from hypophosphite-laden wastewater via field-induced electro-Fenton coupled with anodic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132750. [PMID: 37956560 DOI: 10.1016/j.jhazmat.2023.132750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 11/15/2023]
Abstract
Electrochemical recovered ferric phosphate (FePO4) precipitates from hypophosphite-laden wastewater were shown to be an efficient method for phosphorus (P) recovery. However, the influence of chloride ions (Cl-) coexisting commonly in wastewater is not known for this treatment. Herein, a field-induced electro-Fenton coupled with anodic oxidation electrochemical system consisting of a Ti-RuO2 anode, an Fe inductive electrode and an activated carbon fiber (ACF) cathode, namely Ti-RuO2/Fe/ACF(NaCl) system, was established to recover phosphorus (P) as FePO4 from hypophosphite-laden wastewater in the presence of Cl-. This system enabled a hypophosphite (H2PO2-, 1.0 mM) removal ratio of ~100% and all P was recovered within 30 min at 5.0 V under the initial solution pH of 3.0. The Faradaic efficiency and energy consumption of P recovery achieved the maximum value (~94%) and the lowest value (~16 kW h kg-1 P), respectively. Reactive oxygen species including 1O2, FeIVO2+, •O2- and •OH contribute to convert H2PO2- to PO43-, which immediately formed FePO4 with the generated Fe3+ at the optimized conditions. Therein, the contribution of non-radical 1O2 was very considerable. This system exhibited good stability. The efficiency and cost for treatment of actual hypophosphite-laden wastewater were addressed to check its applicability for P recovery.
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yunhan Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jiaxi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Kaifeng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Xueyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
5
|
Du J, Waite TD, Biesheuvel PM, Tang W. Recent advances and prospects in electrochemical coupling technologies for metal recovery from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130023. [PMID: 36155294 DOI: 10.1016/j.jhazmat.2022.130023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 05/27/2023]
Abstract
With the development of our society, the desire to recover valuable metal resources from metal-containing wastewaters or natural water bodies is becoming increasingly stronger nowadays. To overcome the limitations of single techniques, coupling technologies with synergistic effects are attracting increasing attention regarding metal resource recovery from water with particular interest in electrochemical coupling technologies in view of the advantages of electrochemical methods. This state-of-the-art review comprehensively presented the mechanisms and performance of electrochemical coupling systems for metal recovery from water. To give a clear overview of current research trends, technologies coupled with electrochemical processes can be categorized into six main types: electrochemical techniques, membrane modules, adsorption/extraction techniques, sonication technologies, energy supply techniques and others. The electrochemical coupling system has shown synergistic advantages (e.g., improving metal recovery efficiency, reducing energy consumption) over single technologies. We then discuss the remaining challenges, present corresponding solutions, and put forward future directions for current electrochemical coupled systems towards metal recovery. This review is conducive to broadening the potential applications of electrochemical coupling processes for metal recovery and sustainable water treatment.
Collapse
Affiliation(s)
- Jiaxin Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8911 MA Leeuwarden, the Netherlands
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
6
|
Delsouz Chahardeh M, Maleki A, Bozorg A. 3D reticulated vitreous carbon as advanced cathode material in galvanic deposition process. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Rajoria S, Vashishtha M, Sangal VK. Treatment of electroplating industry wastewater: a review on the various techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72196-72246. [PMID: 35084684 DOI: 10.1007/s11356-022-18643-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Water pollution by recalcitrant compounds is an increasingly important problem due to the continuous introduction of new chemicals into the environment. Choosing appropriate measures and developing successful strategies for eliminating hazardous wastewater contaminants from industrial processes is currently a primary goal. Electroplating industry wastewater involves highly toxic cyanide (CN), heavy metal ions, oils and greases, organic solvents, and the complicated composition of effluents and may also contain biological oxygen demand (BOD), chemical oxygen demand (COD), SS, DS, TS, and turbidity. The availability of these metal ions in electroplating industry wastewater makes the water so toxic and corrosive. Because these heavy metals are harmful to living things, they must be removed to prevent them from being absorbed by plants, animals, and humans. As a result, exposure to electroplating wastewater can induce necrosis and nephritis in humans and lung cancer, digestive system cancer, anemia, hepatitis, and maxillary sinus cancer with prolonged exposure. For the safe discharge of electroplating industry effluents, appropriate wastewater treatment has to be provided. This article examines and assesses new approaches such as coagulation and flocculation, chemical precipitation, ion exchange, membrane filtration, adsorption, electrochemical treatment, and advanced oxidation process (AOP) for treating the electroplating industry wastewater. On the other hand, these physicochemical approaches have significant drawbacks, including a high initial investment and operating cost due to costly chemical reagents, the production of metal complexes sludge that needs additional treatment, and a long recovery process. At the same time, advanced techniques such as electrochemical treatment can remove various kinds of organic and inorganic contaminants such as BOD, COD, and heavy metals. The electrochemical treatment process has several advantages over traditional technologies, including complete removal of persistent organic pollutants, environmental friendliness, ease of integration with other conventional technologies, less sludge production, high separation, and shorter residence time. The effectiveness of the electrochemical treatment process depends on various parameters, including pH, electrode material, operation time, electrode gap, and current density. This review mainly emphasizes the removal of heavy metals and another pollutant such as CN from electroplating discharge. This paper will be helpful in the selection of efficient techniques for treatment based on the quantity and characteristics of the effluent produced.
Collapse
Affiliation(s)
- Sonal Rajoria
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India
| | - Manish Vashishtha
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India.
| | - Vikas K Sangal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India.
| |
Collapse
|
8
|
An efficient Two-Chamber Electrodeposition-Electrodialysis combination craft for nickel recovery and phosphorus removal from spent electroless nickel plating bath. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Jiang T, Guan W, Fu M. Recovery of nickel from electroless nickel plating wastewater based on the synergy of electrocatalytic oxidation and electrodeposition technology. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10741. [PMID: 35692071 DOI: 10.1002/wer.10741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Nickel exists primarily as a stable complex in electroless nickel plating wastewater, and the Ni recovery from it cannot be achieved solely through electrodeposition. As the electrocatalytic oxidation has excellent oxidation potential to break down the complex, an efficient and stable electrochemical system using the synergy of electrocatalytic oxidation and electrochemical deposition technology was developed for the recovery of nickel from electroless nickel plating wastewater. In the present study, the effects of initial pH, current density, and initial nickel ion concentration on the treatment performance of the electrochemical system was investigated. The highest Ni recovery (94.84%) and total organic carbon removal (63.94%) were achieved at a current density of 83.3 mA/cm2 , initial pH of 3.0, and initial Ni concentration of 0.01 M. At the same time, the recovered nickel product was confirmed by scanning electron microscopy, energy dispersive X-ray, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Furthermore, the electrochemical system displayed good stability and economic benefits, thereby suggesting its excellent application potential for the treatment of electroless nickel plating wastewater. PRACTITIONER POINTS: An efficient and stable electrochemical system was developed for the recovery of nickel from electroless nickel plating wastewater. In an acidic medium, the nickel recovery rate and TOC removal ratio were 94.84% and 63.94%, respectively. The system displayed good stability, thereby suggesting its excellent application potential for the treatment of nickel plating wastewater.
Collapse
Affiliation(s)
- Tao Jiang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Wei Guan
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, China
| | - Min Fu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
10
|
Zhuo Q, Xu X, Xie S, Ren X, Chen Z, Yang B, Li Y, Niu J. Electro-oxidation of Ni (II)-citrate complexes at BDD electrode and simultaneous recovery of metallic nickel by electrodeposition. J Environ Sci (China) 2022; 116:103-113. [PMID: 35219408 DOI: 10.1016/j.jes.2021.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 06/14/2023]
Abstract
The simultaneous electro-oxidation of Ni (II)-citrate and electrodeposition recovery of nickel metal were attempted in a combined electro-oxidation-electrodeposition reactor with a boron-doped diamond (BDD) anode and a polished titanium cathode. Effects of initial nickel citrate concentration, current density, initial pH, electrode spacing, electrolyte type, and initial electrolyte dosage on electrochemical performance were examined. The efficiencies of Ni (II)-citrate removal and nickel metal recovery were determined to be 100% and over 72%, respectively, under the optimized conditions (10 mA/cm2, pH 4.09, 80 mmol/L Na2SO4, initial Ni (II)-citrate concentration of 75 mg/L, electrode spacing of 1 cm, and 180 min of electrolysis). Energy consumption increased with increased current density, and the energy consumption was 0.032 kWh/L at a current density of 10 mA/cm2 (pH 6.58). The deposits at the cathode were characterized by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These characterization results indicated that the purity of metallic nickel in cathodic deposition was over 95%. The electrochemical system exhibited a prospective approach to oxidize metal complexes and recover metallic nickel.
Collapse
Affiliation(s)
- Qiongfang Zhuo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaofeng Xu
- School of Civil Engineering, University of South China, Hengyang 421001, China; School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shuibo Xie
- School of Civil Engineering, University of South China, Hengyang 421001, China.
| | - Xiuwen Ren
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Zhongying Chen
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junfeng Niu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
11
|
Persulfate enhanced electrochemical oxidation of phenol with CuFe2O4/ACF (activated carbon fibers) cathode. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Devda V, Chaudhary K, Varjani S, Pathak B, Patel AK, Singhania RR, Taherzadeh MJ, Ngo HH, Wong JWC, Guo W, Chaturvedi P. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered 2021; 12:4697-4718. [PMID: 34334104 PMCID: PMC8806852 DOI: 10.1080/21655979.2021.1946631] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
In the last two decades, water use has increased at twice the rate of population growth. The freshwater resources are getting polluted by contaminants like heavy metals, pesticides, hydrocarbons, organic waste, pathogens, fertilizers, and emerging pollutants. Globally more than 80% of the wastewater is released into the environment without proper treatment. Rapid industrialization has a dramatic effect on developing countries leading to significant losses to economic and health well-being in terms of toxicological impacts on humans and the environment through air, water, and soil pollution. This article provides an overview of physical, chemical, and biological processes to remove wastewater contaminants. A physical and/or chemical technique alone appears ineffective for recovering useful resources from wastewater containing complex components. There is a requirement for more processes or processes combined with membrane and biological processes to enhance operational efficiency and quality. More processes or those that are combined with biological and membrane-based processes are required to enhance operational efficiencies and quality. This paper intends to provide an exhaustive review of electrochemical technologies including microbial electrochemical technologies. It provides comprehensive information for the recovery of metals, nutrients, sulfur, hydrogen, and heat from industrial effluents. This article aims to give detailed information into the advancements in electrochemical processes to energy use, improve restoration performance, and achieve commercialization. It also covers bottlenecks and perspectives of this research area.
Collapse
Affiliation(s)
- Viralkunvar Devda
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Kashika Chaudhary
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
| | - Bhawana Pathak
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Jonathan W. C. Wong
- Institute of Bioresource and Agriculture and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, HKSAR
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Preeti Chaturvedi
- Environmental Toxicology Group, Aquatic Toxicology Laboratory, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Zhang F, Wang W, Xu L, Zhou C, Sun Y, Niu J. Treatment of Ni-EDTA containing wastewater by electrochemical degradation using Ti 3+ self-doped TiO 2 nanotube arrays anode. CHEMOSPHERE 2021; 278:130465. [PMID: 34126689 DOI: 10.1016/j.chemosphere.2021.130465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Ethylene diamine tetraacetic acid (EDTA) could form stable complexes with nickel due to its strong chelation. Ni-EDTA has significant impacts on human health because of its acute toxicity and low biodegradability, thus some appropriate approaches are required for its removal. In this research, a Ti3+ self-doped TiO2 nanotube arrays electrode (ECR-TiO2 NTA) was prepared and employed in electrochemical degradation of Ni-EDTA. The oxygen evolution potential of ECR-TiO2 NTA was 2.6 V vs. SCE. More than 96% Ni-EDTA and 88% TOC was removed after reaction for 120 min at current density 2 mA cm-2 at pH 4.34. The degradation of Ni-EDTA was mainly through the cleavage of amine group within Ni-EDTA and furthermore decomposed it into small molecular acids and inorganic ions including NH4+and NO3-. The electro-deposition of nickel ions at cathode was confirmed by XPS and was greatly affected by the pH of solution. The effects of current density, initial Ni-EDTA concentration, initial pH of solution and HCO3- concentration on Ni-EDTA degradation were investigated. The results exhibited that the ECR-TiO2 NTA had excellent efficiencies in electrochemical degradation of Ni-EDTA. The LSV analysis suggested that Ni-EDTA oxidation on ECR-TiO2 NTA anode and the production of hydroxyl radical (·OH) on the anode played an important role in the removal of Ni-EDTA.
Collapse
Affiliation(s)
- Fan Zhang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Weilai Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Chengzhi Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yanglong Sun
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
14
|
Wang R, Shu J, Chen M, Wang R, He D, Wang J, Tang C, Han Y, Luo Z. An innovative method for fractionally removing high concentrations of Ni2+, PO43−, TP, COD, and NH4+-N from printed-circuit-board nickel plating wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Liu Y, Deng YY, Zhang Q, Liu H. Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143901. [PMID: 33310303 DOI: 10.1016/j.scitotenv.2020.143901] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
As the rapid increase of the worldwide population, recovering valuable resources from wastewater have attracted more and more attention by governments and academia. Electrochemical technologies have been extensively investigated over the past three decades to purify wastewater. However, the application of these technologies for resource recovery from wastewater has just attracted limited attention. In this review, the recent (2010-2020) electrochemical technologies for resource recovery from wastewater are summarized and discussed for the first time. Fundamentals of typical electrochemical technologies are firstly summarized and analyzed, followed by the specific examples of electrochemical resource recovery technologies for different purposes. Based on the fundamentals of electrochemical reactions and without the addition of chemical agents, metallic ions, nutrients, sulfur, hydrogen and chemical compounds can be effectively recovered by means of electrochemical reduction, electrochemical induced precipitation, electrochemical stripping, electrochemical oxidation and membrane-based electrochemical processes, etc. Pros and cons of each electrochemical technology in practical applications are discussed and analyzed. Single-step electrochemical process seems ineffectively to recover valuable resources from the wastewater with complicated constituents. Multiple-step processes or integrated with biological and membrane-based technologies are essential to improve the performance and purity of products. Consequently, this review attempts to offer in-depth insights into the developments of next-generation of electrochemical technologies to minimize energy consumption, boost recovery efficiency and realize the commercial application.
Collapse
Affiliation(s)
- Yuan Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Ying-Ying Deng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
16
|
Wang C, Li T, Yu G, Deng S. Removal of low concentrations of nickel ions in electroplating wastewater by combination of electrodialysis and electrodeposition. CHEMOSPHERE 2021; 263:128208. [PMID: 33297167 DOI: 10.1016/j.chemosphere.2020.128208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
The low concentration of nickel in electroplating wastewater is difficult to treat to meet the discharge standard. In this study, a commercial cation exchange membrane was used to combine the electrodialysis on a titanium plate anode sintered ruthenium-iridium and the electrodeposition on a stainless steel cathode to reduce the nickel concentration to less 0.1 mg L-1. The electrolytic properties of the electrodialysis combined with the electrodeposition were investigated at different cell voltages, electrolysis time, initial electrolyte pH, electrolyte flow rates and initial Ni2+ concentrations. The results indicated that the Ni2+ concentration in the anolyte and the catholyte could be reduced to 0.015 and 0.085 mg L-1, respectively, with the initial Ni2+ concentration of 1.0 mg L-1, which could meet the most strict Ni2+ discharge standard of 0.1 mg L-1. The electrodeposition of Ni2+ on the cathode enhanced the migration of the Ni2+ in the electrolytes, which was beneficial to decrease the energy consumption. Therefore, the combination of electrodialysis and electrodeposition was promising to reduce the low concentration of Ni2+ in the electroplating wastewater.
Collapse
Affiliation(s)
- Chao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tong Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Du J, Zhang B, Li J, Lai B. Decontamination of heavy metal complexes by advanced oxidation processes: A review. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Zhang J, Zhao X, Wang Y, Djellabi R. Recovery of Phosphorus from Hypophosphite-Laden Wastewater: A Single-Compartment Photoelectrocatalytic Cell System Integrating Oxidation and Precipitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1204-1213. [PMID: 31876142 DOI: 10.1021/acs.est.9b05125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recovery of phosphorus through precipitation from hypophosphite-laden wastewater is more difficult than from orthophosphate-laden wastewater because of the higher solubility of hypophosphite (H2PO2-). Herein, a single-compartment photoelectrocatalytic (PEC) cell system consisting of a TiO2/Ni-Sb-SnO2 bifunctional photoanode and an activated carbon fiber (ACF) cathode with dosing Fe2+ ions was developed for recovery of phosphorus in the form of FePO4 from hypophosphite-laden wastewater. In the PEC process, H2PO2- with an initial concentration of 1.0 mM was completely oxidized and recovered within 30 min at 3.0 V, and the pseudo-first-order rate constant of H2PO2- oxidation was ∼4 times than that in the electrocatalytic process and even ∼89 times than that in the photocatalytic process. The bifunctional photoanode can simultaneously generate •OH radicals and O3; the ACF cathode can electrogenerate H2O2; H2O2, O3, and the added Fe2+ can interact with each other to produce •OH radicals and Fe3+ ions. •OH radicals mainly from the Fenton process were responsible for oxidation of H2PO2- to PO43-, which immediately combined with Fe3+ to form FePO4 at the optimized conditions to realize recovery of phosphorus. The long-term stability of this system was demonstrated. The efficiency for actual electroless nickel plating effluents was exhibited.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Ridha Djellabi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| |
Collapse
|
19
|
Wang R, Ng DHL, Liu S. Recovery of nickel ions from wastewater by precipitation approach using silica xerogel. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120826. [PMID: 31299583 DOI: 10.1016/j.jhazmat.2019.120826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/06/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
A facile route was developed to recover nickel ions from a synthetic wastewater. It involved the use of silica xerogel containing amine in the nickel sulphate solution resulting in the formation of a greenish precipitate. It was found that this precipitate was mostly amorphous Ni(OH)2 spherical aggregate composed of nanosheets. The pH level of the solution was monitored, and it was maintained in the range of 10-10.5 due to the steady release of amine from the xerogel into the waste solution. The prepared silica xerogel would provide a stable environment for the chemical precipitation of metal ions in wastewater during the whole precipitation process. The silica xerogel was collected and reused for two more cycles of recovery. The nickel removal efficiencies (99.34˜99.65%) kept unchanged and higher than those reported earlier. The collected precipitate that contained nickel hydroxide with some residual silica could be utilized as glass colorant.
Collapse
Affiliation(s)
- Ruilin Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022 Shandong, PR China
| | - Dickon H L Ng
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Shiquan Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022 Shandong, PR China.
| |
Collapse
|
20
|
Sivasakthi P, Sangaranarayanan MV. Pulse electrodeposited nickel with structure directing agents as an electrocatalyst for oxidation of glycerol. NEW J CHEM 2019. [DOI: 10.1039/c9nj01351b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrodeposition of Ni, Ni–CA and Ni–TBr on mild steel using a pulse technique for electro-oxidation of glycerol.
Collapse
Affiliation(s)
- P. Sivasakthi
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | | |
Collapse
|
21
|
Guan W, Zhang Z, Tian S, Du J. Ti 4O 7/g-C 3N 4 for Visible Light Photocatalytic Oxidation of Hypophosphite: Effect of Mass Ratio of Ti 4O 7/g-C 3N 4. Front Chem 2018; 6:313. [PMID: 30137746 PMCID: PMC6066522 DOI: 10.3389/fchem.2018.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/09/2018] [Indexed: 01/21/2023] Open
Abstract
Hypophosphite wastewater treatment is still a critical issue in metallurgical processes and the oxidation of hypophosphite to phosphate followed by the precipitation of phosphate is an important strategy for hypophosphite wastewater treatment. Herein, Ti4O7/g-C3N4 photocatalysts with various mass ratios (Ti4O7 (m): g-C3N4 (m) = 0.5, 0.2, 0.1, and 0.05) were synthesized by a hydrolysis method and the effect of the mass ratio of Ti4O7 (m): g-C3N4 (m) on Ti4O7/g-C3N4 visible light photocatalytic oxidation of hypophosphite was evaluated. The as-prepared Ti4O7/g-C3N4 were characterized and confirmed by SEM, XPS, XRD and FTIR. Moreover, the specific surface area and the distribution of pore size of Ti4O7/g-C3N4 was also analyzed. Our results showed that Ti4O7/g-C3N4 exhibited remarkably improved photocatalytic performance on hypophosphite oxidation compared with g-C3N4 and meanwhile 1:2-Ti4O7/g-C3N4 with a mass ratio of 0.5 showed the best photocatalytic performance with the highest oxidation rate constant (17.7-fold and 91.0-fold higher than that of pure g-C3N4 and Ti4O7, respectively). The enhanced performance of photocatalytic oxidation of hypophosphite was ascribed to the heterojunction structure of Ti4O7/g-C3N4 with broader light absorption and significantly enhanced efficiency of the charge carrier (e−-h+) generation and separation. Additionally, the generated ·OH and ·O2- radicals contributed to the hypophosphite oxidation during the photocatalytic system.
Collapse
Affiliation(s)
- Wei Guan
- South China Institute of Environmental Sciences, The Ministry of Environment Protection of PRC, Guangzhou, China
| | - Zhenghua Zhang
- Graduate School at Shenzhen, Research Institute of Environmental Engineering and Nano-Technology, Tsinghua University, Shenzhen, China
| | - Shichao Tian
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China
| | - Jianwei Du
- South China Institute of Environmental Sciences, The Ministry of Environment Protection of PRC, Guangzhou, China
| |
Collapse
|