1
|
Kongkaew S, Janduang S, Srilikhit A, Kaewnu K, Thipwimonmas Y, Cotchim S, Torrarit K, Phua CH, Limbut W. Waste DVD polycarbonate substrate for screen-printed carbon electrode modified with PVP-stabilized AuNPs for continuous free chlorine detection. Talanta 2024; 277:126406. [PMID: 38901193 DOI: 10.1016/j.talanta.2024.126406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
An electrochemical free chlorine sensor was developed by modifying a lab-made screen-printed carbon electrode (SPCE) with gold nanoparticles synthesized with polyvinylpyrrolidone (AuNPs-PVP). The electrode was made by screen printing carbon ink on a waste digital versatile disc (SPC-wDVD). PVP was used to stabilize AuNPs. Scanning electron microscopy showed that AuNPs aggregated without the stabilizer. The electrochemical behavior of the SPC-wDVD was evaluated by comparison with commercial SPCEs from two companies. Electrochemical characterization involved cyclic voltammetry and electrochemical impedance spectroscopy. The detection of free chlorine in water samples was continuous, facilitated by a flow-injection system. In the best condition, the developed sensor exhibited linearity from 0.25 to 3.0 and 3.0 to 500 mg L-1. The limit of detection was 0.1 mg L-1. The stability of the sensor enabled the detection of free chlorine at least 475 times with an RSD of 3.2 %. The AuNPs-PVP/SPC-wDVD was able to detect free chlorine in drinking water, tap water and swimming pool water. The agreement between the results obtained with the proposed method and the standard spectrophotometric method confirmed the precision of the developed sensor.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Santipap Janduang
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Angkana Srilikhit
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Krittapas Kaewnu
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Yudtapum Thipwimonmas
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Suparat Cotchim
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kamonchanok Torrarit
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Cheng Ho Phua
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Yang Y, Hao Y, Huang L, Luo Y, Chen S, Xu M, Chen W. Recent Advances in Electrochemical Sensors for Formaldehyde. Molecules 2024; 29:327. [PMID: 38257238 PMCID: PMC11154431 DOI: 10.3390/molecules29020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Formaldehyde, a ubiquitous indoor air pollutant, plays a significant role in various biological processes, posing both environmental and health challenges. This comprehensive review delves into the latest advancements in electrochemical methods for detecting formaldehyde, a compound of growing concern due to its widespread use and potential health hazards. This review underscores the inherent advantages of electrochemical techniques, such as high sensitivity, selectivity, and capability for real-time analysis, making them highly effective for formaldehyde monitoring. We explore the fundamental principles, mechanisms, and diverse methodologies employed in electrochemical formaldehyde detection, highlighting the role of innovative sensing materials and electrodes. Special attention is given to recent developments in nanotechnology and sensor design, which significantly enhance the sensitivity and selectivity of these detection systems. Moreover, this review identifies current challenges and discusses future research directions. Our aim is to encourage ongoing research and innovation in this field, ultimately leading to the development of advanced, practical solutions for formaldehyde detection in various environmental and biological contexts.
Collapse
Affiliation(s)
- Yufei Yang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Lijie Huang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanjian Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Maotian Xu
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
3
|
Płócienniczak-Bywalska P, Rębiś T, Leda A, Milczarek G. Lignosulfonate-Assisted In Situ Deposition of Palladium Nanoparticles on Carbon Nanotubes for the Electrocatalytic Sensing of Hydrazine. Molecules 2023; 28:7076. [PMID: 37894555 PMCID: PMC10609262 DOI: 10.3390/molecules28207076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This paper presents a novel modified electrode for an amperometric hydrazine sensor based on multi-walled carbon nanotubes (MWCNTs) modified with lignosulfonate (LS) and decorated with palladium nanoparticles (NPds). The MWCNT/LS/NPd hybrid was characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The electrochemical properties of the electrode material were evaluated using cyclic voltammetry and chronoamperometry. The results showed that GC/MWCNT/LS/NPd possesses potent electrocatalytic properties towards the electro-oxidation of hydrazine. The electrode demonstrated exceptional electrocatalytic activity coupled with a considerable sensitivity of 0.166 μA μM-1 cm-2. The response was linear from 3.0 to 100 µM L-1 and 100 to 10,000 µM L-1, and the LOD was quantified to 0.80 µM L-1. The efficacy of the modified electrode as an electrochemical sensor was corroborated in a study of hydrazine determination in water samples.
Collapse
Affiliation(s)
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Amanda Leda
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Grzegorz Milczarek
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| |
Collapse
|
4
|
Soleh A, Saisahas K, Promsuwan K, Saichanapan J, Thavarungkul P, Kanatharana P, Meng L, Mak WC, Limbut W. A wireless smartphone-based "tap-and-detect" formaldehyde sensor with disposable nano-palladium grafted laser-induced graphene (nanoPd@LIG) electrodes. Talanta 2023; 254:124169. [PMID: 36549140 DOI: 10.1016/j.talanta.2022.124169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
We developed a fully integrated smart sensing device for on-site testing of food to detect trace formaldehyde (FA). A nano-palladium grafted laser-induced graphene (nanoPd@LIG) composite was synthesized by one-step laser irradiation of a Pd2+-chitosan-polyimide precursor. The composite was synthesized in the form of a three-electrode sensor on a polymer substrate. The electrochemical properties and morphology of the fabricated composite were characterized and the electrochemical kinetics of FA oxidation at the nanoPd@LIG electrode were investigated. The nanoPd@LIG electrode was combined with a smart electrochemical sensing (SES) device to determine FA electrochemically. The proposed SES device uses near field communication (NFC) to receive power and transfer data between a smartphone interface and a battery-free sensor. The proposed FA sensor exhibited a linear detection range from 0.01 to 4.0 mM, a limit of detection of 6.4 μM, good reproducibility (RSDs between 2.0 and 10.1%) and good anti-interference properties for FA detection. The proposed system was used to detect FA in real food samples and the results correlated well with the results from a commercial potentiostat and a spectrophotometric analysis.
Collapse
Affiliation(s)
- Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lingyin Meng
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
5
|
Kaewnu K, Boonna S, Kongkaew S, Phonchai A, Chaisiwamongkhol K, Thongprajukaew K, Limbut W. A portable colorimetric device based on PVDF indicator gel for formaldehyde detection in food and wood products. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Malakhova N, Mozharovskaia P, Kifle AB, Kozitsina A. Bismuth-coated screen-printed electrodes for the simple voltammetric determination of formaldehyde. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3423-3433. [PMID: 35993393 DOI: 10.1039/d2ay00876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For the first time, bismuth modified electrodes have been used for the voltammetric detection of formaldehyde (FM). The well-known method of forming formaldehyde hydrazone (FAH) in the presence of hydrazine sulphate was used to convert the hydrated form of FM into its electrochemically active derivative. Various experimental conditions for differential pulse voltammetry were studied to achieve the best analytical performance. The FAH reduction current (FM response) reaches its maximum value at a pH of a phosphate buffer solution of 5.2 ± 0.1 in the presence of 0.09-0.12 M hydrazine sulfate on a bismuth film preliminarily precipitated for 8-12 min from acidic Bi(III) acetate solutions at an electrolysis potential of -1.0 V on the surface of a screen-printed carbon electrode (SPCE). A dendritic-like film structure was created on the SPCE surface. Under the optimized conditions a linear calibration curve over the range of 0.01-5 mg L-1 (0.33-167 μM) FM was achieved, with a detection limit of 0.002 mg L-1 (0.06 μM). The determination of FM in waste water, melt water from snow within the city industrial zone, and a widely used pharmaceutical preparation "Endofalk®" with good results revealed the potential applicability of a bismuth modified SPCE (BiSPCE) for trace analysis.
Collapse
Affiliation(s)
- Nataliya Malakhova
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| | - Polina Mozharovskaia
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| | - Alexander Berhane Kifle
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| | - Alisa Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| |
Collapse
|
7
|
Torrarit K, Kongkaew S, Samoson K, Kanatharana P, Thavarungkul P, Chang KH, Abdullah AFL, Limbut W. Flow Injection Amperometric Measurement of Formalin in Seafood. ACS OMEGA 2022; 7:17679-17691. [PMID: 35664606 PMCID: PMC9161257 DOI: 10.1021/acsomega.2c00515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Formalin is illegally used as an antibacterial and a preservative in seafood products. It is extremely important for public health reasons to be able to simply, rapidly, and accurately detect formalin in fresh seafood. In this work, we developed a flow injection amperometric (FI-Amp) formalin sensor based on a glassy carbon electrode modified with a composite of palladium particles and carbon microspheres (PdPs-CMs/GCE). The CMs were decorated with PdPs via an electroless deposition method. The surface morphology of the CMs and the PdPs-CMs composite was characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). The electrochemical behavior and measurement of formalin at the PdPs-CMs/GCE was evaluated by cyclic voltammetry and amperometry. The modified electrode demonstrated good electrocatalytic performance for the oxidation of formalin. The synthesis method and FI-Amp operating conditions were optimized. Under the optimal conditions, the developed sensor showed a linear range of 0.025 to 15.00 mmol L-1 and a detection limit of 8 μmol L-1. Repeatability (RSD < 4.1%, n = 30), reproducibility (RSD = 0.25%, n = 5), stability (RSD = 3.2%, n = 80), and selectivity were good. The fabricated sensor achieved recoveries of formalin in seafood between 96 ± 1 to 105 ± 3 (n = 3).
Collapse
Affiliation(s)
- Kamonchanok Torrarit
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Forensic
Science Innovation and Service Center, Prince
of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Supatinee Kongkaew
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Forensic
Science Innovation and Service Center, Prince
of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kritsada Samoson
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Forensic
Science Innovation and Service Center, Prince
of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kah Haw Chang
- Forensic
Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan Malaysia
| | - Ahmad Fahmi Lim Abdullah
- Forensic
Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan Malaysia
| | - Warakorn Limbut
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Forensic
Science Innovation and Service Center, Prince
of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
8
|
Fappiano L, Carriera F, Iannone A, Notardonato I, Avino P. A Review on Recent Sensing Methods for Determining Formaldehyde in Agri-Food Chain: A Comparison with the Conventional Analytical Approaches. Foods 2022; 11:1351. [PMID: 35564074 PMCID: PMC9102064 DOI: 10.3390/foods11091351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Formaldehyde, the simplest molecule of the aldehyde group, is a gaseous compound at room temperature and pressure, is colorless, and has a strong, pungent odor. It is soluble in water, ethanol, and diethyl ether and is used in solution or polymerized form. Its maximum daily dosage established by the EPA is 0.2 μg g-1 of body weight whereas that established by the WHO is between 1.5 and 14 mg g-1: it is in category 1A of carcinogens by IARC. From an analytical point of view, formaldehyde is traditionally analyzed by HPLC with UV-Vis detection. Nowadays, the need to analyze this compound quickly and in situ is increasing. This work proposes a critical review of methods for analyzing formaldehyde in food using sensing methods. A search carried out on the Scopus database documented more than 50 papers published in the last 5 years. The increase in interest in the recognition of the presence of formaldehyde in food has occurred in recent years, above all due to an awareness of the damage it can cause to human health. This paper focuses on some new sensors by analyzing their performance and comparing them with various no-sensing methods but focusing on the determination of formaldehyde in food products. The sensors reported are of various types, but they all share a good LOD, good accuracy, and a reduced analysis time. Some of them are also biodegradable and others have a very low cost, many are portable and easy to use, therefore usable for the recognition of food adulterations on site.
Collapse
Affiliation(s)
| | | | | | | | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy; (L.F.); (F.C.); (A.I.); (I.N.)
| |
Collapse
|
9
|
Kongkaew S, Joonyong K, Kanatharana P, Thavarungkul P, Limbut W. Fabrication and characterization of Prussian blue screen-printed working electrode and their application for free chlorine monitoring in swimming pool water. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Boonmee W, Samoson K, Yodrak J, Thiagchanya A, Phonchai A, Limbut W. Adsorptive Cathodic Stripping Voltammetry for Quantification of Alprazolam. Molecules 2021; 26:molecules26102958. [PMID: 34065709 PMCID: PMC8156809 DOI: 10.3390/molecules26102958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
A simple and highly sensitive electrochemical sensor was developed for adsorptive cathodic stripping voltammetry of alprazolam. Based on an electrochemically pretreated glassy carbon electrode, the sensor demonstrated good adsorption and electrochemical reduction of alprazolam. The morphology of the glassy carbon electrode and the electrochemically pretreated glassy carbon electrode were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical behaviors of alprazolam were determined by cyclic voltammetry, and the analytical measurements were studied by adsorptive cathodic stripping voltammetry. Optimized operational conditions included the concentration and deposition time of sulfuric acid in the electrochemical pretreatment, preconcentration potential, and preconcentration time. Under optimal conditions, the developed alprazolam sensor displayed a quantification limit of 0.1 mg L-1, a detection limit of 0.03 mg L-1, a sensitivity of 67 µA mg-1 L cm-2 and two linear ranges: 0.1 to 4 and 4 to 20 mg L-1. Sensor selectivity was excellent, and repeatability (%RSD < 4.24%) and recovery (82.0 ± 0.2 to 109.0 ± 0.3%) were good. The results of determining alprazolam in beverages with the developed system were in good agreement with results from the gas chromatography-mass spectrometric method.
Collapse
Affiliation(s)
- Waree Boonmee
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
- Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kritsada Samoson
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
- Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla 90112, Thailand
| | - Janjira Yodrak
- Satun Provincial Police Forensic Science, Police Forensic Science Center 9, Office of Police Forensic Science, Royal Thai Police, Mueangsatun, Satun 91000, Thailand;
| | - Adul Thiagchanya
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
| | - Apichai Phonchai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
- Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
- Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla 90112, Thailand
- Correspondence: ; Tel.: +66-74-288563
| |
Collapse
|
11
|
Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W. Subnanomolar detection of promethazine abuse using a gold nanoparticle-graphene nanoplatelet-modified electrode. Mikrochim Acta 2020; 187:646. [PMID: 33165663 DOI: 10.1007/s00604-020-04616-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
A simple, sensitive, and effective adsorptive stripping voltammetric sensor for the detection of trace-level promethazine was created based on a gold nanoparticle-graphene nanoplatelet-modified glassy carbon electrode (AuNP-GrNP/GCE). AuNP-GrNP nanocomposites were synthesized using an electroless deposition process, and the morphology was characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical behavior and detection of promethazine at the AuNP-GrNP/GCE were investigated utilizing cyclic voltammetry and adsorptive stripping voltammetry. The AuNP-GrNP/GCE showed outstanding synergistic electrochemical activity for promethazine oxidation, a highly active surface area, great adsorptivity, and outstanding catalytic properties. The electrolyte pH, amount of AuNP-GrNP nanocomposite, preconcentration potential (vs. Ag/AgCl), and time were optimized to obtain a high performance electrochemical sensor. Under optimal conditions, the proposed sensor displayed two linear concentration ranges from 1.0 nmol L-1 to 1.0 μmol L-1 and from 1.0 to 10 μmol L-1. The limits of detection and quantitation were 0.40 and 1.4 nmol L-1, respectively. This sensor displayed high sensitivity, a capability for rapid analysis, and excellent repeatability and reproducibility. The developed sensor was effective and practical for promethazine detection in biological fluids and forensic samples, and the obtained results exhibited excellent agreement with the results obtained using the method described in the British Pharmacopoeia. Graphical abstract.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
12
|
Ashfaq MY, Al-Ghouti MA, Zouari N. Functionalization of reverse osmosis membrane with graphene oxide and polyacrylic acid to control biofouling and mineral scaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139500. [PMID: 32479964 DOI: 10.1016/j.scitotenv.2020.139500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The polyamide reverse osmosis (RO) membrane was modified with graphene oxide (GO), followed by polymerization of acrylic acid (used as an antiscalant) for the reduction of both biofouling and mineral scaling. After functionalization, the water contact angle reduced from 41.7 ± 4.5° for unmodified RO membrane to 24.4 ± 1.3° for the modified RO membranes, which showed that membrane hydrophilicity was significantly enhanced, in addition to the improvement in surface smoothness. The modified membranes were tested for their anti-scaling and anti-biofouling characteristics. When the mineral scaling test was performed using CaSO4 solution as feedwater, the permeate flux was reduced by only 3% as compared to the unmodified RO membrane which encountered up to 22% decline in flux by the end of the experiment. After the scaling test, the membrane surface was characterized by Scanning electron microscopy - energy-dispersive X-ray spectroscopy, Fourier transform infrared, and X-ray diffraction techniques. The results showed that the unmodified RO membrane was fully covered with gypsum precipitates. Whereas, the precipitates were detected only at the highly saturated zones of the water channel i.e. towards the exit of water flow. Additionally, the anti-bacterial test was performed through bacteriostasis rate determination, which showed that the modified membranes inhibited the growth of nearly 95% of the bacterial cells. Further experiments were also performed to investigate the inhibition of both scaling and biofouling by modified RO membranes. Thus, it was found that the polymer-modified GO coated RO membranes were able to diminish both gypsum scaling and biofilm formation demonstrating their potential to control different types of membrane fouling.
Collapse
Affiliation(s)
- Mohammad Y Ashfaq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| | - Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar.
| | - Nabil Zouari
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| |
Collapse
|
13
|
Promsuwan K, Thongtawat J, Limbut W. Porous palladium-poly(3,4-ethylenedioxythiophene)-coated carbon microspheres/graphene nanoplatelet-modified electrode for flow-based-amperometric hydrazine sensor. Mikrochim Acta 2020; 187:539. [PMID: 32876787 DOI: 10.1007/s00604-020-04470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
A highly stable flow-injection amperometric hydrazine sensor was developed based on a glassy carbon electrode modified with palladium-poly(3,4-ethylene dioxythiophene) coated on carbon microspheres/graphene nanoplatelets (Pd-PEDOT@CM/GNP/GCE). The Pd-PEDOT@CM/GNP composite was characterized by scanning electron microscopy and energy-dispersive x-ray analysis (SEM/EDX). The modified GCE was electrochemically characterized using cyclic voltammetry and chronoamperometry. The electrocatalytic activity of the Pd-PEDOT@CM/GNP/GCE toward hydrazine oxidation was significantly better than the activity of a bare GCE, a CM/GCE, a GNP/GCE, a Pd-PEDOT/GCE, and a Pd-PEDOT@CM/GCE. The sensor operated best at a low working potential of + 0.10 V (vs. Ag/AgCl). Under optimal conditions, sensitivity toward hydrazine detection and operational stability (601 injections/one electrode preparation) were excellent. The response was linear from 1.0 to 100 μmol L-1 and from 100 to 5000 μmol L-1 with a detection limit of 0.28 ± 0.02 μmol L-1 and high sensitivity of 0.200 μA μM-1 cm-2. The sensor showed good repeatability (relative standard deviation (RSD) < 1.4%, n = 15), reproducibility (RSD < 2.7%, n = 6), and anti-interference characteristics toward hydrazine detection. The feasibility of the electrochemical sensor was proved by the successful determination of hydrazine in water samples, and the results were in good agreement with those obtained from spectrophotometric analysis. Graphical abstract.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Jariya Thongtawat
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
14
|
|
15
|
Gor’kov KV, Talagaeva NV, Kleinikova SA, Dremova NN, Vorotyntsev MA, Zolotukhina EV. Palladium-polypyrrole composites as prospective catalysts for formaldehyde electrooxidation in alkaline solutions. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W. Nitrite amperometric sensor for gunshot residue screening. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Simple flow injection system for non-enzymatic glucose sensing based on an electrode modified with palladium nanoparticles-graphene nanoplatelets/mullti-walled carbon nanotubes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134621] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|