1
|
Hossain SS, Ahmad Alwi MM, Saleem J, Al-Odail F, Basu A, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cell-II-Platinum-Based Catalysts. CHEM REC 2022; 22:e202200156. [PMID: 36073789 DOI: 10.1002/tcr.202200156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Indexed: 12/14/2022]
Abstract
Platinum-based catalysts have a long history of application in formic acid oxidation (FAO). The single metal Pt is active in FAO but expensive, scarce, and rapidly deactivates. Understanding the mechanism of FAO over Pt important for the rational design of catalysts. Pt nanomaterials rapidly deactivate because of the CO poisoning of Pt active sites via the dehydration pathway. Alloying with another transition metal improves the performance of Pt-based catalysts through bifunctional, ensemble, and steric effects. Supporting Pt catalysts on a high-surface-area support material is another technique to improve their overall catalytic activity. This review summarizes recent findings on the mechanism of FAO over Pt and Pt-based alloy catalysts. It also summarizes and analyzes binary and ternary Pt-based catalysts to understand their catalytic activity and structure relationship.
Collapse
Affiliation(s)
- Sk Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Muhammad Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Avijit Basu
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Au/Pt Bimetallic Nanoparticle Decorated Microparticle Hybrid Catalyst System for Heterogeneous Hydrogenation of Styrene. Catal Letters 2021. [DOI: 10.1007/s10562-021-03599-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
PT-BI Co-Deposit Shell on AU Nanoparticle Core: High Performance and Long Durability for Formic Acid Oxidation. Catalysts 2021. [DOI: 10.3390/catal11091049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work presents the catalysts of Pt-Bi shells on Au nanoparticle cores and Pt overlayers on the Pt-Bi shells toward formic acid oxidation (FAO). Pt and Bi were co-deposited on Au nanoparticles (Au NP) via the irreversible adsorption method using a mixed precursor solution of Pt and Bi ions, and the amount of the co-deposits was controlled with the repetition of the deposition cycle. Rinsing of the co-adsorbed ionic layers of Pt and Bi with a H2SO4 solution selectively removed the Bi ions to leave Pt-rich and Bi-lean (<0.4 atomic %) co-deposits on Au NP (Pt-Bi/Au NP), conceptually similar to de-alloying. Additional Pt was deposited over Pt-Bi/Au NPs (Pt/Pt-Bi/Au NPs) to manipulate further the physicochemical properties of Pt-Bi/Au NPs. Transmission electron microscopy revealed the core–shell structures of Pt-Bi/Au NPs and Pt/Pt-Bi/Au NPs, whose shell thickness ranged from roughly four to six atomic layers. Moreover, the low crystallinity of the Pt-containing shells was confirmed with X-ray diffraction. Electrochemical studies showed that the surfaces of Pt-Bi/Au NPs were characterized by low hydrogen adsorption abilities, which increased after the deposition of additional Pt. Durability tests were carried out with 1000 voltammetric cycles between −0.26 and 0.4 V (versus Ag/AgCl) in a solution of 1.0 M HCOOH + 0.1 M H2SO4. The initial averaged FAO performance on Pt-Bi/Au NPs and Pt/Pt-Bi/Au NPs (0.11 ± 0.01 A/mg, normalized to the catalyst weight) was higher than that of a commercial Pt nanoparticle catalyst (Pt NP, 0.023 A/mg) by a factor of ~5, mainly due to enhancement of dehydrogenation and suppression of dehydration. The catalytic activity of Pt/Pt-Bi/Au NP (0.04 ± 0.01 A/mg) in the 1000th cycle was greater than that of Pt-Bi/Au NP (0.026 ± 0.003 A/mg) and that of Pt NP (0.006 A/mg). The reason for the higher durability was suggested to be the low mobility of surface Pt atoms on the investigated catalysts.
Collapse
|
4
|
Bagheri Hariri M, Siavash Moakhar R, Sharifi Abdar P, Zargarnezhad H, Shone M, Rahmani SA, Moradi N, Niksefat V, Shayar Bahadori K, Dolati A. Facile and ultra-sensitive voltammetric electrodetection of Hg 2+ in aqueous media using electrodeposited AuPtNPs/ITO. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2688-2700. [PMID: 34036981 DOI: 10.1039/d1ay00361e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we have investigated the use of electrodeposited Au-Pt nanoparticles (AuPtNPs) on indium tin oxide (ITO) for the detection of Hg2+ heavy ions in water samples. The mechanism of AuPtNP electrocrystallization on ITO glass in an aqueous solution containing 0.5 mM HAuCl4 + 0.5 mM H2PtCl6 is described for the first time. The nucleation mechanism of monometallic AuNPs on ITO was found to be progressive; however, a transition from progressive to instantaneous was observed for bimetallic AuPtNPs at elevated overpotentials. The modified ITOs were then assessed for the electrodetection of Hg2+ in aqueous media. It was shown by differential pulse voltammetry (DPV) that the sensitivity of the constructed AuPtNPs/ITO electrode toward Hg2+ was about 2.08 μA nM-1. An approximate detection limit of 4.03 nM Hg2+ was achieved, which is below the permissible level of 30.00 nM Hg2+ in drinking water, according to the World Health Organization (WHO). Characterization of AuPt nanostructures was carried out by X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM), and different electrochemical techniques (cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS)). Our results indicate a good potential of a facile and robust electrochemical assembly for on-site detection of heavy metals in water samples.
Collapse
Affiliation(s)
- Mohiedin Bagheri Hariri
- Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Maslowska-Jarzyna K, Korczak ML, Wagner JA, Chmielewski MJ. Carbazole-Based Colorimetric Anion Sensors. Molecules 2021; 26:3205. [PMID: 34071969 PMCID: PMC8199442 DOI: 10.3390/molecules26113205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Owing to their strong carbazole chromophore and fluorophore, as well as to their powerful and convergent hydrogen bond donors, 1,8-diaminocarbazoles are amongst the most attractive and synthetically versatile building blocks for the construction of anion receptors, sensors, and transporters. Aiming to develop carbazole-based colorimetric anion sensors, herein we describe the synthesis of 1,8-diaminocarbazoles substituted with strongly electron-withdrawing substituents, i.e., 3,6-dicyano and 3,6-dinitro. Both of these precursors were subsequently converted into model diamide receptors. Anion binding studies revealed that the new receptors exhibited significantly enhanced anion affinities, but also significantly increased acidities. We also found that rear substitution of 1,8-diamidocarbazole with two nitro groups shifted its absorption spectrum into the visible region and converted the receptor into a colorimetric anion sensor. The new sensor displayed vivid color and fluorescence changes upon addition of basic anions in wet dimethyl sulfoxide, but it was poorly selective; because of its enhanced acidity, the dominant receptor-anion interaction for most anions was proton transfer and, accordingly, similar changes in color were observed for all basic anions. The highly acidic and strongly binding receptors developed in this study may be applicable in organocatalysis or in pH-switchable anion transport through lipophilic membranes.
Collapse
Affiliation(s)
| | | | | | - Michał J. Chmielewski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (K.M.-J.); (M.L.K.); (J.A.W.)
| |
Collapse
|
6
|
Wang QX, Yuan MT, Shen HY, Zhang HY, Chen X, Xu Y, Duan XX, Liu KL, Gao T, Ning YG, Wang J. Fabrication of polyaniline-supported bimetal AgNi nanoparticles and the enhanced performance towards formate oxidation. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04902-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Piwowar J, Lewera A. Formic acid catalytic electrooxidation on Pt covered by Au adstructures – role of electronic surface properties. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Cymann A, Sawczak M, Ryl J, Klugmann-Radziemska E, Wilamowska-Zawłocka M. Capacitance Enhancement by Incorporation of Functionalised Carbon Nanotubes into Poly(3,4-Ethylenedioxythiophene)/Graphene Oxide Composites. MATERIALS 2020; 13:ma13102419. [PMID: 32466234 PMCID: PMC7287990 DOI: 10.3390/ma13102419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/02/2023]
Abstract
This paper reports on the role of oxidised carbon nanotubes (oxMWCNTs) present in poly-3,4-ethylenedioxytiophene (PEDOT)/graphene oxide (GOx) composite. The final ternary composites (pEDOT/GOx/oxMWCNTs) are synthesised by an electrodeposition process from the suspension-containing monomer, oxidised carbon nanotubes and graphene oxide. Dissociated functional groups on the surface of graphene oxide play a role of counter-ions for the polymer chains. Detailed physicochemical and electrochemical characterisation of the ternary composites is presented in the paper. The results prove that the presence of oxMWCNTs in the ternary composites doubles the capacitance values compared to the binary ones (450 vs. 270 F cm-3 for PEDOT/GOx/oxMWCNTs and PEDOT/GOx, respectively). The amount of carbon nanotubes in the synthesis solution is crucial for physicochemical properties of the composites, their adhesion to the electrode substrate and the electrochemical performance.
Collapse
Affiliation(s)
- Anita Cymann
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.C.); (E.K.-R.)
| | - Mirosław Sawczak
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland;
| | - Jacek Ryl
- Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Ewa Klugmann-Radziemska
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.C.); (E.K.-R.)
| | - Monika Wilamowska-Zawłocka
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.C.); (E.K.-R.)
- Correspondence: ; Tel.: +48-58-347-24-74
| |
Collapse
|
9
|
Aragon AG, Kierulf-Vieira W, Łęcki T, Zarębska K, Widera-Kalinowska J, Skompska M. Synthesis and application of N-doped TiO2/CdS/poly(1,8-diaminocarbazole) composite for photocatalytic degradation of 4-chlorophenol under visible light. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Shifrina ZB, Matveeva VG, Bronstein LM. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chem Rev 2019; 120:1350-1396. [DOI: 10.1021/acs.chemrev.9b00137] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
| | - Valentina G. Matveeva
- Tver State Technical University, Department of Biotechnology and Chemistry, 22 A. Nikitina St, 170026 Tver, Russia
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
- King Abdulaziz University, Faculty of Science, Department of Physics, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Bąk KM, Chabuda K, Montes H, Quesada R, Chmielewski MJ. 1,8-Diamidocarbazoles: an easily tuneable family of fluorescent anion sensors and transporters. Org Biomol Chem 2019; 16:5188-5196. [PMID: 29971303 DOI: 10.1039/c8ob01031e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis, structure and anion recognition properties of an extensive, rationally designed series of bisamide derivatives of 1,8-diaminocarbazole and 1,8-diamino-3,6-dichlorocarbazole are described. Despite simple structures and the presence of only three hydrogen bond donors, such compounds are remarkably strong and selective receptors for oxyanions in DMSO + 0.5%H2O. Owing to their carbazole fluorophore, they are also sensitive turn-on fluorescent sensors for H2PO4- and AcO-, with a more than 15-fold increase in fluorescence intensity upon binding. Despite relatively weak chloride affinity, some of the diamidocarbazoles have also been shown, for the first time, to be very active chloride transporters through lipid bilayers. The binding, sensing and transport properties of these receptors can be easily modulated by the usually overlooked variations in the length and degree of branching of their alkyl side arms. Overall, this study demonstrates that the 1,8-diamidocarbazole binding unit is a very promising and synthetically versatile platform for the development of fluorescent sensors and transporters for anions.
Collapse
Affiliation(s)
- Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | | | | | | | | |
Collapse
|
12
|
Ulas B, Caglar A, Sahin O, Kivrak H. Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. J Colloid Interface Sci 2018; 532:47-57. [PMID: 30077066 DOI: 10.1016/j.jcis.2018.07.120] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 11/25/2022]
Abstract
In the present study, the carbon supported Pd, PdAg and PdAgNi (Pd/C, PdAg/C and PdAgNi/C) electrocatalysts are prepared via NaBH4 reduction method at varying molar atomic ratio for formic acid electrooxidation. These as-prepared electrocatalysts are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), N2 adsorption-desorption, and X-ray electron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and lineer sweep voltammetry (LSV). While Pd50Ag50/C exhibits the highest catalytic activity among the bimetallic electrocatalyst, it is observed that Pd70Ag20Ni10/C electrocatalysts have the best performance among the all electrocatalysts. Its maximum current density is about 1.92 times higher than that of Pd/C (0.675 mA cm-2). Also, electrochemical impedance spectroscopy (EIS), chronoamperometry (CA) and lineer sweep voltammetry (LSV) results are in a good agreement with CV results in terms of stability and electrocatalytic activity of Pd50Ag50/C and Pd70Ag20Ni10/C. The Pd70Ag20Ni10/C catalyst is believed to be a promising anode catalyst for the direct formic acid fuel cell.
Collapse
Affiliation(s)
- Berdan Ulas
- Van Yuzuncu Yil University, Faculty of Engineering, Department of Chemical Engineering, Van 65000, Turkey
| | - Aykut Caglar
- Van Yuzuncu Yil University, Faculty of Engineering, Department of Chemical Engineering, Van 65000, Turkey
| | - Ozlem Sahin
- Selcuk University, Faculty of Engineering, Department of Chemical Engineering, Konya 42031, Turkey
| | - Hilal Kivrak
- Van Yuzuncu Yil University, Faculty of Engineering, Department of Chemical Engineering, Van 65000, Turkey.
| |
Collapse
|