1
|
Das S, Mishra A, Ghangrekar MM. Production of Hydrogen Peroxide Using Various Metal-Based Catalysts in Electrochemical and Bioelectrochemical Systems: Mini Review. JOURNAL OF HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE 2020; 24. [DOI: 10.1061/(asce)hz.2153-5515.0000498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/20/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Sovik Das
- Ph.D. Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID:
| | - Ashish Mishra
- Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - M. M. Ghangrekar
- Professor, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India; Head, School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur 721302, India (corresponding author). ORCID:
| |
Collapse
|
2
|
Yu Z, Han H, Feng P, Zhao S, Zhou T, Kakade A, Kulshrestha S, Majeed S, Li X. Recent advances in the recovery of metals from waste through biological processes. BIORESOURCE TECHNOLOGY 2020; 297:122416. [PMID: 31786035 DOI: 10.1016/j.biortech.2019.122416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Wastes containing critical metals are generated in various fields, such as energy and computer manufacturing. Metal-bearing wastes are considered as secondary sources of critical metals. The conventional physicochemical methods of metals recovery are energy-intensive and cause further pollution. Low-cost and eco-friendly technologies including biosorbents, bioelectrochemical systems (BESs), bioleaching, and biomineralization, have become alternatives in the recovery of critical metals. However, a relatively low recovery rate and selectivity severely hinder their large-scale applications. Researchers have expanded their focus to exploit novel strain resources and strategies to improve the biorecovery efficiency. The mechanisms and potential applicability of modified biological techniques for improving the recovery of critical metals need more attention. Hence, this review summarize and compare the strategies that have been developed for critical metals recovery, and provides useful insights for energy-efficient recovery of critical metals in future industrial applications.
Collapse
Affiliation(s)
- Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Sabahat Majeed
- Department of Biosciences, COMSATS University, Park Road, Tarlai Kalan Islamabad, Islamabad 44000, Pakistan
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
3
|
Huang L, Tian F, Pan Y, Shan L, Shi Y, Logan BE. Mutual benefits of acetate and mixed tungsten and molybdenum for their efficient removal in 40 L microbial electrolysis cells. WATER RESEARCH 2019; 162:358-368. [PMID: 31295655 DOI: 10.1016/j.watres.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
Practical application of metallurgical microbial electrolysis cells (MECs) requires efficient removal of metals and organics in larger reactors. A 40 L cylindrical single-chamber MEC fed acetate was used to achieve high removals of W(VI) and Mo(VI). In the presence of both metals, there were nearly complete removals of W (97 ‒ 98%), Mo (98 ‒ 99%), and acetate (95 ‒ 96%), along with a low level of hydrogen production (0.0037-0.0039 L/L/d) at a hydraulic residence time (HRT) of 2 d (influent ratios of W:Mo:acetate of 0.5:1.0:24 mM). The final concentrations of these conditions were sufficient to meet national wastewater discharge standards. In the controls with individual metals or acetate, lower contaminant removals were obtained (W, 2 ‒ 4%; Mo, 3 ‒ 5%, acetate, 36 ‒ 39%). Metals removal in all cases was primarily due to the biocathodes rather than the bioanodes. The presence of metals decreased microbial diversity on the anodes and increased diversity on the cathodes, based on analysis at the phylum, class and genus levels, as a function of HRT and influent concentration. This study demonstrated the feasibility of larger-scale single-chamber MECs for efficient treatment of W and Mo, moving metallurgical MECs closer to commercialization for wastewater treatment of these two metals.
Collapse
Affiliation(s)
- Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Fuping Tian
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yuzhen Pan
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Liyuan Shan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yong Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
4
|
Huang L, Li M, Pan Y, Quan X, Yang J, Puma GL. Deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production in stacked bioelectrochemical systems (BESs): Impact of heavy metals W(VI)/Mo(VI) molar ratio, initial pH and electrode material. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:348-359. [PMID: 29684887 DOI: 10.1016/j.jhazmat.2018.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production was investigated in stacked bioelectrochemical systems (BESs) composed of microbial electrolysis cell (1#) serially connected with parallel connected microbial fuel cell (2#). The impact of W/Mo molar ratio (in the range 0.01 mM : 1 mM and vice-versa), initial pH (1.5 to 4.0) and cathode material (stainless steel mesh (SSM), carbon rod (CR) and titanium sheet (TS)) on the BES performance was systematically investigated. The concentration of Mo(VI) was more influential than W(VI) in determining the rate of deposition of both metals and the rate of hydrogen production. Complete metal recovery was achieved at equimolar W/Mo ratio of 0.05 mM : 0.05 mM. The rates of metal deposition and hydrogen production increased at acidic pH, with the fastest rates at pH 1.5. The morphology of the metal deposits and the valence of the Mo were correlated with W/Mo ratio and pH. CR cathodes (2#) coupled with SSM cathodes (1#) achieved a significant rate of hydrogen production (0.82 ± 0.04 m3/m3/d) with W and Mo deposition (0.049 ± 0.003 mmol/L/h and 0.140 ± 0.004 mmol/L/h (1#); 0.025 ± 0.001 mmol/L/h and 0.090 ± 0.006 mmol/L/h (2#)).
Collapse
Affiliation(s)
- Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ming Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuzhen Pan
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jinhui Yang
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom.
| |
Collapse
|
5
|
Huang L, Lin Z, Quan X, Zhao Q, Yang W, Logan BE. Efficient In Situ Utilization of Caustic for Sequential Recovery and Separation of Sn, Fe, and Cu in Microbial Fuel Cells. ChemElectroChem 2018. [DOI: 10.1002/celc.201800431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Zheqian Lin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resource and Environment; Harbin Institute of Technology; Harbin 150090 China
| | - Wulin Yang
- Department of Civil and Environmental Engineering; The Pennsylvania State University, University Park, Pennsylvania; 16802 USA
| | - Bruce E. Logan
- Department of Civil and Environmental Engineering; The Pennsylvania State University, University Park, Pennsylvania; 16802 USA
| |
Collapse
|
6
|
Wang Q, Huang L, Quan X, Zhao Q. Cooperative light irradiation and in-situ produced H 2 O 2 for efficient tungsten and molybdenum deposition in microbial electrolysis cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Dependency of migration and reduction of mixed Cr2O72−, Cu2+ and Cd2+ on electric field, ion exchange membrane and metal concentration in microbial fuel cells. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|