1
|
Sun Y, Shi F, Wang B, Shi N, Ding Z, Xie L, Jiang J, Han M. Large-Scale Synthesis of Hierarchical Porous MOF Particles via a Gelation Process for High Areal Capacitance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101691. [PMID: 37242106 DOI: 10.3390/nano13101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Metal-organic frameworks (MOFs) with hierarchical porous structures have been attracting intense interest currently due to their promising applications in catalysis, energy storage, drug delivery, and photocatalysis. Current fabrication methods usually employ template-assisted synthesis or thermal annealing at high temperatures. However, large-scale production of hierarchical porous metal-organic framework (MOF) particles with a simple procedure and mild condition is still a challenge, which hampers their application. To address this issue, we proposed a gelation-based production method and achieved hierarchical porous zeolitic imidazolate framework-67 (called HP-ZIF67-G thereafter) particles conveniently. This method is based on a metal-organic gelation process through a mechanically stimulated wet chemical reaction of metal ions and ligands. The interior of the gel system is composed of small nano and submicron ZIF-67 particles as well as the employed solvent. The relatively large pore size of the graded pore channels spontaneously formed during the growth process is conducive to the increased transfer rate of substances within the particles. It is proposed that the Brownian motion amplitude of the solute is greatly reduced in the gel state, which leads to porous defects inside the nanoparticles. Furthermore, HP-ZIF67-G nanoparticles interwoven with polyaniline (PANI) exhibited an exceptional electrochemical charge storage performance with an areal capacitance of 2500 mF cm-2, surpassing those of many MOF materials. This stimulates new studies on MOF-based gel systems to obtain hierarchical porous metal-organic frameworks which should benefit further applications in a wide spectrum of fields ranging from fundamental research to industrial applications.
Collapse
Affiliation(s)
- Yujie Sun
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Fei Shi
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Bo Wang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Naien Shi
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Zhen Ding
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiadong Jiang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Min Han
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
2
|
Wang H, Liu Y, Kong L, Yin S, Shen X, Premlatha S. Grown of flower-like polyaniline nanosheet clusters on carbon cloth for enhanced electrochemical energy storage. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Tan H, Dong X, Ma Y, Dai W, Hu P, Xu M, Shang C. Growing hierarchical CoNi-based phosphates sandwiched Ni metal on carbon cloth for advanced supercapacitors. RESULTS IN SURFACES AND INTERFACES 2023. [DOI: 10.1016/j.rsurfi.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
4
|
Patil SS, Patil PS. Status review of nickel phosphides for hybrid supercapacitors. NANOSCALE 2022; 14:16731-16748. [PMID: 36345777 DOI: 10.1039/d2nr05139g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition metal phosphides are a new class of materials that have attracted enormous attention as a potential electrode for supercapacitors (SCs) compared to metal oxides/hydroxides and metal sulfides due to their strong redox-active behaviour, good electrical conductivity, layered structure, low cost, and high chemical and thermal stability. Recently, several efforts have been made to develop nickel phosphides (NixPy) (NPs) for high-performance SCs. The electrochemical properties of NPs can be easily tuned by several innovative approaches, such as heteroatom doping, defect engineering, and developing a hollow architecture. The prospects of NPs as a positive electrode in hybrid SCs are summarized to understand the material's practical relevance. Finally, the challenges and perspectives are provided for the development of high-performance NPs for SCs. The thorough elucidation of the structure-property-performance relationship offers a guide for developing NP-based next-generation energy-storage devices.
Collapse
Affiliation(s)
- Satyajeet S Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, M.S., India.
| | - Pramod S Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, M.S., India.
| |
Collapse
|
5
|
Zhao Z, Xia K, Hou Y, Zhang Q, Ye Z, Lu J. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev 2021; 50:12702-12743. [PMID: 34643198 DOI: 10.1039/d1cs00800e] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid development of portable/wearable electronics proposes new demands for energy storage devices, which are flexibility, smart functions and long-time outdoor operation. Supercapacitors (SCs) show great potential in portable/wearable applications, and the recently developed flexible, smart and self-sustainable supercapacitors greatly meet the above demands. In these supercapacitors, conductive polymers (CPs) are widely applied due to their high flexibility, conductivity, pseudo-capacitance, smart characteristics and moderate preparation conditions. Herein, we'd like to introduce the CP-based flexible, smart and self-sustainable supercapacitors for portable/wearable electronics. This review first summarizes the flexible SCs based on CPs and their composites with carbon materials and metal compounds. The smart supercapacitors, i.e., electrochromic, electrochemical actuated, stretchable, self-healing and stimuli-sensitive ones, are then presented. The self-sustainable SCs which integrate SC units with energy-harvesting units in one compact configuration are also introduced. The last section highlights some current challenges and future perspectives of this thriving field.
Collapse
Affiliation(s)
- Zhenyun Zhao
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Kequan Xia
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. .,Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. .,Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| |
Collapse
|
6
|
Enhanced electrochemical property of graphite felt@Co2(OH)2CO3 via Ni−P electrodeposition for flexible supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Jiang J, Liu B, Liu G, Qian D, Yang C, Li J. A systematically comparative study on LiNO3 and Li2SO4 aqueous electrolytes for electrochemical double-layer capacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|