1
|
Wei P, Hao Z, Yang Y, Liu L. Facile and functional synthesis of Ni0.85Se/Carbon nanospheres with hollow structure as counter electrodes of DSSCs. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Maurya O, Khaladkar S, Horn MR, Sinha B, Deshmukh R, Wang H, Kim T, Dubal DP, Kalekar A. Emergence of Ni-Based Chalcogenides (S and Se) for Clean Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100361. [PMID: 34019738 DOI: 10.1002/smll.202100361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Nickel chalcogenide (S and Se) based nanostructures intrigued scientists for some time as materials for energy conversion and storage systems. Interest in these materials is due to their good electrochemical stability, eco-friendly nature, and low cost. The present review compiles recent progress in the area of nickel-(S and Se)-based materials by providing a comprehensive summary of their structural and chemical features and performance. Improving properties of the materials, such as electrical conductivity and surface characteristics (surface area and morphology), through strategies like nano-structuring and hybridization, are systematically discussed. The interaction of the materials with electrolytes, other electro-active materials, and inactive components are analyzed to understand their effects on the performance of energy conversion and storage devices. Finally, outstanding challenges and possible solutions are briefly presented with some perspectives toward the future development of these materials for energy-oriented devices with high performance.
Collapse
Affiliation(s)
- Oshnik Maurya
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| | - Somnath Khaladkar
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| | - Michael R Horn
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Bhavesh Sinha
- National Centre for Nanoscience and Nanotechnology, University of Mumbai (NCNNUM), Mumbai, 400098, India
| | - Rajendra Deshmukh
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| | - Hongxia Wang
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - TaeYoung Kim
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Archana Kalekar
- Department of Physics, Institute of Chemical Technology (ICT), Matunga, Mumbai, Maharashtra, 400019, India
| |
Collapse
|
3
|
Jiang QS, Li W, Wu J, Cheng W, Zhu J, Zhu T, Ren S, Zhang Y. Enhanced photovoltaic performance of dye-sensitized solar cells based on electrodeposited sulfur-doped MSex (M=Co, Ni) films. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Recent advances in cobalt-, nickel-, and iron-based chalcogen compounds as counter electrodes in dye-sensitized solar cells. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63361-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Jiang H, Wang Z, Yang Q, Tan L, Dong L, Dong M. Ultrathin Ti 3C 2T x (MXene) Nanosheet-Wrapped NiSe 2 Octahedral Crystal for Enhanced Supercapacitor Performance and Synergetic Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2019; 11:31. [PMID: 34137972 PMCID: PMC7770682 DOI: 10.1007/s40820-019-0261-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/15/2019] [Indexed: 05/20/2023]
Abstract
Metal selenides, such as NiSe2, have exhibited great potentials as multifunctional materials for energy storage and conversation. However, the utilization of pure NiSe2 as electrode materials is limited by its poor cycling stability, low electrical conductivity, and insufficient electrochemically active sites. To remedy these defects, herein, a novel NiSe2/Ti3C2Tx hybrid with strong interfacial interaction and electrical properties is fabricated, by wrapping NiSe2 octahedral crystal with ultrathin Ti3C2Tx MXene nanosheet. The NiSe2/Ti3C2Tx hybrid exhibits excellent electrochemical performance, with a high specific capacitance of 531.2 F g-1 at 1 A g-1 for supercapacitor, low overpotential of 200 mV at 10 mA g-1, and small Tafel slope of 37.7 mV dec-1 for hydrogen evolution reaction (HER). Furthermore, greater cycling stabilities for NiSe2/Ti3C2Tx hybrid in both supercapacitor and HER have also been achieved. These significant improvements compared with unmodified NiSe2 should be owing to the strong interfacial interaction between NiSe2 octahedral crystal and Ti3C2Tx MXene, which provides enhanced conductivity, fast charge transfer as well as abundant active sites, and highlight the promising potentials in combinations of MXene with metal selenides for multifunctional applications such as energy storage and conversion.
Collapse
Affiliation(s)
- Hanmei Jiang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus-C, Denmark
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Zegao Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus-C, Denmark
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Qian Yang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus-C, Denmark.
| |
Collapse
|
6
|
Preparation of nickel selenide by pulsed-voltage electrodeposition and its application as a highly-efficient electrocatalyst at counter electrodes of quantum-dot sensitized solar cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Zhang X, Zhang H, Wang X, Zhou X. Enhanced electrocatalytic performance of nickel diselenide grown on graphene toward the reduction of triiodide redox couples. RSC Adv 2018; 8:28131-28138. [PMID: 35542733 PMCID: PMC9084294 DOI: 10.1039/c8ra05167d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
The promising activity of nickel diselenide (NiSe2) towards electrocatalysis has made it especially attractive in energy conversion fields. However, NiSe2 with high electrocatalytic performance always requires complicated fabrication or expensive conductive polymers, resulting in the scale-up still being challenging. Herein, we introduce a simple and cost-effective synthesis of NiSe2 dispersed on the surface of graphene (NiSe2/RGO NPs). NiSe2/RGO NPs exhibited enhanced electrocatalytic performance and long-term stability for the reduction reaction of triiodide redox couples in dye-sensitized solar cells (DSSCs). Leveraging the advantageous features, the DSSC fabricated with NiSe2/RGO NPs as CE had a smaller charge-transfer resistance (Rct) value and higher short-circuit current density and fill factor than naked NiSe2 NPs. Additionally, NiSe2/RGO NPs achieved a PCE of 7.76%, higher than that of pure NiSe2 (6.51%) and even exceeding that of Pt (7.56%). These prominent features demonstrated that the NiSe2/RGO NPs in this work are a promising cheap and efficient electrocatalyst to replace state-of-the-art Pt. The promising activity of nickel diselenide (NiSe2) towards electrocatalysis has made it especially attractive in energy conversion fields.![]()
Collapse
Affiliation(s)
- Xiao Zhang
- Center for Aircraft Fire and Emergency
- Civil Aviation University of China
- Tianjin 300300
- P. R. China
| | - Haijun Zhang
- Center for Aircraft Fire and Emergency
- Civil Aviation University of China
- Tianjin 300300
- P. R. China
| | - Xingyu Wang
- Center for Aircraft Fire and Emergency
- Civil Aviation University of China
- Tianjin 300300
- P. R. China
| | - Xiaomeng Zhou
- Center for Aircraft Fire and Emergency
- Civil Aviation University of China
- Tianjin 300300
- P. R. China
| |
Collapse
|