1
|
Li S, Wang H, Li Y, Yang H, Zhu X, Bu Q, Liu Q. Enhancement of photoelectrocatalytic performance of copper cobaltate nanoflowers modified with 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin for methanol oxidation under light. Dalton Trans 2023; 52:3016-3023. [PMID: 36779369 DOI: 10.1039/d2dt04098k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With the continuously increasing global energy demand, there is an urgent requirement to find efficient methanol oxidation reaction (MOR) catalysts that can replace precious metals. In this work, we have elaborately integrated 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin (H2TCPP) with copper cobaltate (CuCo2O4), which possesses efficient separation of photogenerated charges and increased active sites. The mass activity of H2TCPP/CuCo2O4 (534.75 mA mg-1) toward MOR is higher than that of pure CuCo2O4 (291.75 mA mg-1) under light. In addition, H2TCPP/CuCo2O4 can catalyze the oxidation of other alcohols, such as ethanol, ethanediol, isopropanol, and glycerol. This study demonstrates that it is feasible to enhance the MOR activity by the modification of bimetallic transition metal oxides with porphyrins.
Collapse
Affiliation(s)
- Shu Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Haoran Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yuanhao Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Hui Yang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qijing Bu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
2
|
Li Z, Li B, Yu C, Wang H, Li Q. Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206605. [PMID: 36587986 PMCID: PMC9982577 DOI: 10.1002/advs.202206605] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Indexed: 05/23/2023]
Abstract
Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
Collapse
Affiliation(s)
- Zesheng Li
- College of ChemistryGuangdong University of Petrochemical TechnologyMaoming525000China
| | - Bolin Li
- College of ChemistryGuangdong University of Petrochemical TechnologyMaoming525000China
| | - Changlin Yu
- College of ChemistryGuangdong University of Petrochemical TechnologyMaoming525000China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy MaterialsGuangxi Normal UniversityGuilin541004China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy MaterialsGuangxi Normal UniversityGuilin541004China
| |
Collapse
|
3
|
Li S, Wang H, Sun G, Zhao F, Yang H, Li G, Kong X, Liu Q. Enhanced photoelectrocatalytic performance of porphyrin-modified nickel cobaltite for methanol oxidation under visible light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Farah Hanis Nik Zaiman N, Shaari N. Review on flower-like structure nickel based catalyst in fuel cell application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Fu Y, Du C, Zhang Q, Xiao K, Zhang X, Chen J. Colorimetric and Photocurrent-Polarity-Switching Photoelectrochemical Dual-Mode Sensing Platform for Highly Selective Detection of Mercury Ions Based on the Split G-Quadruplex-Hemin Complex. Anal Chem 2022; 94:15040-15047. [PMID: 36259408 DOI: 10.1021/acs.analchem.2c03084] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mercury ion (Hg2+) is one of the most harmful heavy metal ions with the greatest impact on public health. Herein, based on the excellent catalytic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) and the strong photocurrent-polarity-switching ability to SnS2 photoanode of the split G-quadruplex-hemin complex, the magnetic NiCo2O4@SiO2-NH2 sphere-assisted colorimetric and photoelectrochemical (PEC) dual-mode sensing platform was developed for the Hg2+ assay. First, the amino-labelled single-stranded DNA1 (S1) was immobilized on NiCo2O4@SiO2-NH2 and then partly hybridized with another single-stranded DNA2 (S2). When Hg2+ was present, the thymine-Hg2+-thymine base pairs between S1 and S2 were formed, causing the formation of the split G-quadruplex in the presence of K+. After addition of hemin, the split G-quadruplex-hemin complex was obtained and effectually catalyzed the H2O2-mediated oxidation of TMB. Thus, the color and absorbance intensity of the TMB solution were changed, resulting in the visual and colorimetric detection of Hg2+. The linear response range is 10 pM to 10 nM, and the detection limit is 3.8 pM. Meanwhile, the above G-quadruplex-hemin complex effectively switched the photocurrent polarity of SnS2-modified indium tin oxide electrode, leading to the sensitive and selective PEC assay of Hg2+ with a linear response range of 5 pM to 500 nM and a detection limit of 2.3 pM. Moreover, the developed dual-mode sensing platform provided mutual authentication of detection results in different modes, effectively improving the assay accuracy and confidence, and may have a good potential application in highly sensitive, selective, and accurate determination of Hg2+ in environmental fields.
Collapse
Affiliation(s)
- Yamin Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, P. R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ke Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
6
|
Zhan J, Yang H, Zhang Q, Zong Q, Du W, Wang Q. Multi-step electrodeposited Ni-Co-P@LDH nanocomposites for high-performance interdigital asymmetric micro-supercapacitors. Dalton Trans 2022; 51:6242-6253. [PMID: 35373786 DOI: 10.1039/d1dt04145b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of high-performance electrode materials and the rational design of asymmetric structures are the two main keys to fabricating micro-supercapacitors (MSCs) with high energy density. Transition metal compounds, especially nickel-cobalt phosphides and hydroxides, are promising electrode materials with excellent pseudo-capacitance. However, they are rarely used in fabricating asymmetric MSCs (AMSCs) due to the limitations of the preparation method. In this work, we constructed hierarchical Ni-Co-P@LDH nanocomposites with outstanding mass specific capacitance (1980 F g-1 at 1 A g-1) via a multi-step electrodeposition method, which is employed with FeOOH to fabricate an interdigital AMSC device (Ni-Co-P@LDHs//PVA-KOH//FeOOH). The as-prepared device exhibits a high working voltage (1.4 V), a large specific capacitance (24.0 mF cm-2 at 0.14 mA cm-2), a high energy density (6.54 μW h cm-2 at a power density of 100 μW cm-2) and good cycling stability (86.5% of capacitance retention after 5000 cycles). This work may provide novel methods for the synthesis of high-performance nickel-cobalt composite materials and their potential applications in interdigital AMSC devices.
Collapse
Affiliation(s)
- Jianhui Zhan
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, PR China.
| | - Hui Yang
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, PR China. .,ZJU-Guangxi-ASEAN Innovation & Research Center, Nanning 530022, PR China
| | - Qilong Zhang
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, PR China. .,ZJU-Guangxi-ASEAN Innovation & Research Center, Nanning 530022, PR China
| | - Quan Zong
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, PR China.
| | - Wei Du
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, PR China.
| | - Qianqian Wang
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
7
|
Three-dimensional oxygen-doped porous graphene: Sodium chloride-template preparation, structural characterization and supercapacitor performances. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Sun M, Wang C, Wang S, Wang Z, Wang Z, Liu J, Song X, Lin D. NH3•H2O-assisted solvent thermal synthesis of mesoporous spherical NiCo2O4 nanomaterials having rich oxygen vacancies for enhanced activity of CH3OH electrooxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Viswanathan C, Ponpandian N. NiCo 2O 4 nanoparticles inlaid on sulphur and nitrogen doped and co-doped rGO sheets as efficient electrocatalysts for the oxygen evolution and methanol oxidation reactions. NANOSCALE ADVANCES 2021; 3:3216-3231. [PMID: 36133652 PMCID: PMC9417605 DOI: 10.1039/d1na00135c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/26/2021] [Accepted: 03/28/2021] [Indexed: 05/06/2023]
Abstract
The present work depicts the fabrication of NiCo2O4 decorated on rGO, and doped and co-doped rGO and its electrocatalytic activity towards the oxygen evolution reaction and methanol oxidation reaction. The NiCo2O4 catalyst with S-doped rGO outperformed the other catalysts, indicating that the sulphur atoms attached on rGO possess low oxophilicity and optimum free energy. This results in facile adsorption of the intermediate products formed during the OER and a rapid release of O2 molecules. The same catalyst requires an overpotential of 1.51 V vs. RHE to attain the benchmark current density value of 10 mA cm-2 and shows a Tafel slope of 57 mV dec-1. It also reveals outstanding stability during its operation for 10 h with a minimum loss in potential. On the other hand, NiCo2O4/S,N-rGO reveals superior activity with high efficiency and stability in catalyzing methanol oxidation. The catalyst delivered a low onset potential of 0.12 V vs. Hg/HgO and high current density of 203.4 mA cm-2 after addition of 0.5 M methanol, revealing the outstanding performance of the electrocatalyst.
Collapse
Affiliation(s)
- C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University Coimbatore-641046 India +91-422-2422-387 +91-422-2428-421
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University Coimbatore-641046 India +91-422-2422-387 +91-422-2428-421
| |
Collapse
|
10
|
Tong Y, Yan X, Liang J, Dou SX. Metal-Based Electrocatalysts for Methanol Electro-Oxidation: Progress, Opportunities, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904126. [PMID: 31608601 DOI: 10.1002/smll.201904126] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Direct methanol fuel cells (DMFCs) are among the most promising portable power supplies because of their unique advantages, including high energy density/mobility of liquid fuels, low working temperature, and low emission of pollutants. Various metal-based anode catalysts have been extensively studied and utilized for the essential methanol oxidation reaction (MOR) due to their superior electrocatalytic performance. At present, especially with the rapid advance of nanotechnology, enormous efforts have been exerted to further enhance the catalytic performance and minimize the use of precious metals. Constructing multicomponent metal-based nanocatalysts with precisely designed structures can achieve this goal by providing highly tunable compositional and structural characteristics, which is promising for the modification and optimization of their related electrochemical properties. The recent advances of metal-based electrocatalytic materials with rationally designed nanostructures and chemistries for MOR in DMFCs are highlighted and summarized herein. The effects of the well-defined nanoarchitectures on the improved electrochemical properties of the catalysts are illustrated. Finally, conclusive perspectives are provided on the opportunities and challenges for further refining the nanostructure of metal-based catalysts and improving electrocatalytic performance, as well as the commercial viability.
Collapse
Affiliation(s)
- Yueyu Tong
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Xiao Yan
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
- Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Ji Liang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
11
|
Honeycombed-like nanosheet array composite NiCo2O4/rGO for efficient methanol electrooxidation and supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137145] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Enhanced photoelectrocatalytic activity of cobalt sulfide modified with porphyrin as a noble-metal-free photoelectroncatalyst towards methanol oxidation under visible-light. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Gamil S, Antuch M, Zedan I, El Rouby WM. 3D NiCr-layered double hydroxide/reduced graphene oxide sand rose-like structure as bifunctional electrocatalyst for methanol oxidation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Yang H, Guo T, Yin D, Liu Q, zhang X, Zhang X. A high-efficiency noble metal-free electrocatalyst of cobalt-iron layer double hydroxides nanorods coupled with graphene oxides grown on a nickel foam towards methanol electrooxidation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Liu BC, Chen SL, Ling XY, Li QX, Xu CW, Liu ZL. High activity of NiCo 2O 4 promoted Pt on three-dimensional graphene-like carbon for glycerol electrooxidation in an alkaline medium. RSC Adv 2020; 10:24705-24711. [PMID: 35516209 PMCID: PMC9055226 DOI: 10.1039/c9ra09896h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/11/2020] [Indexed: 02/04/2023] Open
Abstract
Spinel oxide NiCo2O4 supported on a three-dimensional hierarchically porous graphene-like carbon (3D HPG) material has been firstly used to enhance the activity of Pt for glycerol electrooxidation. The addition of NiCo2O4 into the Pt/HPG catalyst can significantly improve the catalytic performance for glycerol oxidation. When NiCo2O4 is added to the Pt/HPG catalyst, the onset potential is 25 mV more negative than that on the Pt/HPG catalyst without NiCo2O4. The current density at -0.3 V on the Pt-NiCo2O4 (wt 10 : 1)/HPG electrode is 1.3 times higher than that on the Pt (30 wt%)/HPG electrode. The Pt-NiCo2O4 electrode presented in this work shows great potential as an electrocatalyst for glycerol electrooxidation in an alkaline medium.
Collapse
Affiliation(s)
- Bo-Cai Liu
- School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 51006 China
| | - Shao-Li Chen
- School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 51006 China
| | - Xiao-Yu Ling
- School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 51006 China
| | - Qiao-Xian Li
- School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 51006 China
| | - Chang-Wei Xu
- School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 51006 China
| | - Zi-Li Liu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
16
|
Zhang Z, Ren G, Liu Y, Liang Y, Wang M, Wu S, Shen J. Facile Synthesis of PdCu Echinus‐Like Nanocrystals as Robust Electrocatalysts for Methanol Oxidation Reaction. Chem Asian J 2019; 14:4217-4222. [DOI: 10.1002/asia.201901226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/30/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Zhicheng Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Guohong Ren
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Yajun Liu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Ying Liang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Mingqian Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Shishan Wu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
| | - Jian Shen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of EducationSchool of Chemistry and Chemical EngineeringNanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 China
- Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsJiangsu Key Laboratory of Biomedical MaterialsCollege of Chemistry and Materials ScienceNanjing Normal University Wenyuan Road, Qixia District Nanjing 210046 China
| |
Collapse
|
17
|
Tiongco DCM, Jadhav HS, Roy A, Seo JG. Solvothermal Synthesis of Mesoporous 3D‐CuCo
2
O
4
Hollow Tubes as Efficient Electrocatalysts for Methanol Electro‐Oxidation. ChemCatChem 2019. [DOI: 10.1002/cctc.201901028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diane Clare M. Tiongco
- Department of Energy Science and TechnologyMyongji University Nam-dong 17058 Republic of Korea
| | - Harsharaj S. Jadhav
- Department of Energy Science and TechnologyMyongji University Nam-dong 17058 Republic of Korea
| | - Animesh Roy
- Department of Energy Science and TechnologyMyongji University Nam-dong 17058 Republic of Korea
| | - Jeong Gil Seo
- Department of Energy Science and TechnologyMyongji University Nam-dong 17058 Republic of Korea
| |
Collapse
|
18
|
Gamil S, El Rouby WA, Antuch M, Zedan IT. Nanohybrid layered double hydroxide materials as efficient catalysts for methanol electrooxidation. RSC Adv 2019; 9:13503-13514. [PMID: 35519556 PMCID: PMC9063938 DOI: 10.1039/c9ra01270b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
In this work, efficient methanol oxidation fuel cell catalysts with excellent stability in alkaline media have been synthesized by including transition metals to the layered double hydroxide (LDH) nanohybrids. The nanohybrids CoCr-LDH, NiCoCr-LDH and NiCr-LDH were prepared by co-precipitation and their physicochemical characteristics were investigated using TEM, XRD, IR and BET analyses. The nanohybrid CoCr-LDH is found to have the highest surface area of 179.87 m2 g−1. The electrocatalytic activity measurements showed that the current density was increased by increasing the methanol concentration (from 0.1 to 3 M) as a result of its increased oxidation at the surface. The nanohybrid NiCr-LDH, showing the highest pore size (55.5 Å) showed the highest performance for methanol oxidation, with a current density of 7.02 mA cm−2 at 60 mV s−1 using 3 M methanol. In addition, the corresponding onset potential was 0.35 V (at 60 mV s−1 using 3 M methanol) which is the lowest value among all other used LDH nanohybrids. Overall, we observed the following reactivity order: NiCr-LDH > NiCoCr-LDH > CoCr-LDH, as derived from the impedance spectroscopy analysis. Methanol electrooxidation over layered double hydroxides.![]()
Collapse
Affiliation(s)
- Shimaa Gamil
- Renewable Energy Science and Engineering Department
- Faculty of Postgraduate Studies for Advanced Science
- Beni-Suef University
- 62511 Beni-Suef
- Egypt
| | - Waleed M. A. El Rouby
- Materials Science and Nanotechnology Department
- Faculty of Postgraduate Studies for Advanced Science
- Beni-Suef University
- 62511 Beni-Suef
- Egypt
| | | | - I. T. Zedan
- Renewable Energy Science and Engineering Department
- Faculty of Postgraduate Studies for Advanced Science
- Beni-Suef University
- 62511 Beni-Suef
- Egypt
| |
Collapse
|
19
|
Facile hydrothermal synthesis of NiCo2O4- decorated filter carbon as electrodes for high performance asymmetric supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|