1
|
Wang H, Yang TC, Zheng H, Jiang Z, Yang CM, Lai NC. Identification of true active sites in N-doped carbon-supported Fe 2P nanoparticles toward oxygen reduction reaction. J Colloid Interface Sci 2025; 678:806-817. [PMID: 39217696 DOI: 10.1016/j.jcis.2024.08.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Transition metal-based nanoparticles (NPs) are emerging as potential alternatives to platinum for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZAB). However, the simultaneous coexistence of single-atom moieties in the preparation of NPs is inevitable, and the structural complexity of catalysts poses a great challenge to identifying the true active site. Herein, by employing in situ and ex situ XAS analysis, we demonstrate the coexistence of single-atom moieties and iron phosphide NPs in the N, P co-doped porous carbon (in short, Fe-N4-Fe2P NPs/NPC), and identify that ORR predominantly proceeds via the atomic-dispersed Fe-N4 sites, while the presence of Fe2P NPs exerts an inhibitory effect by decreasing the site utilization and impeding mass transfer of reactants. The single-atom catalyst Fe-N4/NPC displays a half-wave potential of 0.873 V, surpassing both Fe-N4-Fe2P NPs/NPC (0.858 V) and commercial Pt/C (0.842 V) in alkaline condition. In addition, the ZAB based on Fe-N4/NPC achieves a peak power density of 140.3 mW cm-2, outperforming that of Pt/C-based ZAB (91.8 mW cm-2) and exhibits excellent long-term stability. This study provides insight into the identification of true active sites of supported ORR catalysts and offers an approach for developing highly efficient, nonprecious metal-based catalysts for high-energy-density metal-air batteries.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tsung-Cheng Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hao Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
George SL, Zhao L, Wang Z, Xue Z, Zhao L. Iron Porphyrin-Based Composites for Electrocatalytic Oxygen Reduction Reactions. Molecules 2024; 29:5655. [PMID: 39683814 DOI: 10.3390/molecules29235655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The oxygen reduction reaction (ORR) is one of the most critical reactions in energy conversion systems, and it facilitates the efficient conversion of chemical energy into electrical energy, which is necessary for modern technology. Developing efficient and cost-effective catalysts for ORRs is crucial for advancing and effectively applying renewable energy technologies such as fuel cells, metal-air batteries, and electrochemical sensors. In recent years, iron porphyrin-based composites have emerged as ideal catalysts for facilitating effective ORRs due to their unique structural characteristics, abundance, advances in synthesis, and excellent catalytic properties, which mimic natural enzymatic systems. However, many articles have focused on reviewing porphyrin-based frameworks or metalloporphyrins in general, necessitating research specifically addressing iron porphyrin. This review discusses iron porphyrin as an effective catalyst in ORRs. It provides a comprehensive knowledge of the application of iron porphyrin-based composites for electrocatalytic ORRs, focusing on their properties, synthesis, structural integration with conductive supports, catalytic mechanism, and efficacy. This review also discusses the challenges of applying iron porphyrin-based composites and provides recommendations to address these challenges.
Collapse
Affiliation(s)
| | - Linkai Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziyi Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Zhang Z, Zhang Q, Hou Y, Li J, Zhu S, Xia H, Yue H, Liu X. Tris(triazolo)triazine-Based Covalent Organic Frameworks for Efficiently Photocatalytic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2024; 63:e202411546. [PMID: 38949611 DOI: 10.1002/anie.202411546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Two-dimensional covalent organic frameworks (2D-COFs) have recently emerged as fascinating scaffolds for solar-to-chemical energy conversion because of their customizable structures and functionalities. Herein, two tris(triazolo)triazine-based COF materials (namely COF-JLU51 and COF-JLU52) featuring large surface area, high crystallinity, excellent stability and photoelectric properties were designed and constructed for the first time. Remarkably, COF-JLU51 gave an outstanding H2O2 production rate of over 4200 μmol g-1 h-1 with excellent reusability in pure water and O2 under one standard sun light, that higher than its isomorphic COF-JLU52 and most of the reported metal-free materials, owing to its superior generation, separation and transport of photogenerated carriers. Experimental and theoretical researches prove that the photocatalytic process undergoes a combination of indirect 2e- O2 reduction reaction (ORR) and 4e- H2O oxidation reaction (WOR). Specifically, an ultrahigh yield of 7624.7 μmol g-1 h-1 with apparent quantum yield of 18.2 % for COF-JLU52 was achieved in a 1 : 1 ratio of benzyl alcohol and water system. This finding contributes novel, nitrogen-rich and high-quality tris(triazolo)triazine-based COF materials, and also designate their bright future in photocatalytic solar transformations.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Qi Zhang
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Yuxin Hou
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jiali Li
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Shanshan Zhu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun, 130012, P.R. China
| | - Huijuan Yue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
4
|
Liu T, Huang H, Xu A, Sun Z, Liu D, Jiang S, Xu L, Chen Y, Liu X, Luo Q, Ding T, Yao T. Manipulation of d-Orbital Electron Configurations in Nonplanar Fe-Based Electrocatalysts for Efficient Oxygen Reduction. ACS NANO 2024; 18:28433-28443. [PMID: 39365637 DOI: 10.1021/acsnano.4c11356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Manipulation of the spin state holds great promise to improve the electrochemical activity of transition metal-based catalysts. However, the underlying relationship between the nonplanar metal coordination environment and spin states remains to be explored. Herein, we report the precise regulation of nonplanar Fe atomic d-orbital energy level into an irregular tetrahedral crystal field configuration by introducing P atoms. With the increase of P coordination number, the spin magnetic moment decreases linearly from 3.8 μB to 0.2 μB, and the high spin content decreases linearly from 31% to 5%. Significantly, a volcanic curve between the spin states of Fe-based catalysts (Fe-NxPy) and oxygen reduction reaction (ORR) activity has been unequivocally established based on the thermodynamic results. Thus, the Fe-N3P1 catalyst with a 19% medium spin state experimentally exhibits the optimal reaction activity with a high half-wave potential of 0.92 V. These findings indicate that regulating electron spin moments through coordination engineering is a promising catalyst design strategy, providing important insights into spin catalysis.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Airong Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiguo Sun
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuaiwei Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yudan Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaokang Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tao Ding
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Yao
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas M, Pérez-Cadenas AF, Carrasco-Marín F. Antibiotic Degradation via Fenton Process Assisted by a 3-Electron Oxygen Reduction Reaction Pathway Catalyzed by Bio-Carbon-Manganese Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1112. [PMID: 38998717 PMCID: PMC11243440 DOI: 10.3390/nano14131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Bio-carbon-manganese composites obtained from olive mill wastewater were successfully prepared using manganese acetate as the manganese source and olive wastewater as the carbon precursor. The samples were characterized chemically and texturally by N2 and CO2 adsorption at 77 K and 273 K, respectively, by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. Electrochemical characterization was carried out by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The samples were evaluated in the electro-Fenton degradation of tetracycline in a typical three-electrode system under natural conditions of pH and temperature (6.5 and 25 °C). The results show that the catalysts have a high catalytic power capable of degrading tetracycline (about 70%) by a three-electron oxygen reduction pathway in which hydroxyl radicals are generated in situ, thus eliminating the need for two catalysts (ORR and Fenton).
Collapse
Affiliation(s)
- Edgar Fajardo-Puerto
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Abdelhakim Elmouwahidi
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Esther Bailón-García
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - María Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
- Dpto. Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Av. de Esparta s/n, Las Rozas de Madrid, 28232 Madrid, Spain
| | - Agustín F Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Francisco Carrasco-Marín
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| |
Collapse
|
6
|
Diab GAA, da Silva MAR, Rocha GFSR, Noleto LFG, Rogolino A, de Mesquita JP, Jiménez‐Calvo P, Teixeira IF. A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300185. [PMID: 38868607 PMCID: PMC11165522 DOI: 10.1002/gch2.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Indexed: 06/14/2024]
Abstract
Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil-derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.
Collapse
Affiliation(s)
- Gabriel A. A. Diab
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Marcos A. R. da Silva
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Guilherme F. S. R. Rocha
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Luis F. G. Noleto
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Andrea Rogolino
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - João P. de Mesquita
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
- Departamento de QuímicaUniversidade Federal dos Vales Jequitinhonha e MucuriRodovia MGT 367 – Km 583, n° 5000, Alto da JacubaDiamantinaMG39100Brazil
| | - Pablo Jiménez‐Calvo
- Department for Materials SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstrasse 7D‐91058ErlangenGermany
- Chemistry of Thin Film MaterialsFriedrich‐Alexander‐Universität Erlangen‐NürnbergIZNF, Cauerstraße 3D‐91058ErlangenGermany
| | - Ivo F. Teixeira
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| |
Collapse
|
7
|
Li L, Lv X, Xue Y, Shao H, Zheng G, Han Q. Custom-Design of Strong Electron/Proton Extractor on COFs for Efficient Photocatalytic H 2O 2 Production. Angew Chem Int Ed Engl 2024; 63:e202320218. [PMID: 38353181 DOI: 10.1002/anie.202320218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 02/29/2024]
Abstract
The development of photocatalysts with continuous electron extraction and rapid proton transfer could kinetically accelerate the artificial photosynthesis, but remains a challenge. Herein, we report the topology-guided synthesis of a high-crystalline triazine covalent organic framework (COF) decorated by uniformly distributed polar oxygen functional groups (sulfonic group or carboxyl) as the strong electron/proton extractor for efficient photocatalytic H2O2 production. It was found that the polarity-based proton transfer as well as electron enrichment in as-obtained COFs played a crucial role in improving the H2O2 photosynthesis efficiency (i.e., with an activity order of sulfonic acid- (SO3H-COF)>carboxyl- (COOH-COF)>hydrogen- (H-COF) functionalized COFs). The strong polar sulfonic acid group in the high-crystalline SO3H-COF triggered a well-oriented built-in electric field and more hydrophilic surface, which serves as an efficient carrier extractor enabling a continuous transportation of the photogenerated electrons and interfacial proton to the active sites (i.e., C atoms linked to -SO3H group). As-accelerated proton-coupled electron transfer (PCET), together with the stabilized O2 adsorption finally leads to the highest H2O2 production rate of 4971 μmol g-1 h-1 under visible light irradiation. Meanwhile, a quantum yield of 15 % at 400 nm is obtained, superior to most reported COF-based photocatalysts.
Collapse
Affiliation(s)
- Liyao Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Yuanyuan Xue
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Huibo Shao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Qing Han
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
8
|
Liu T, Chen Y, Xu A, Liu X, Liu D, Li S, Huang H, Xu L, Jiang S, Luo Q, Ding T, Yao T. Regulating atomic Fe-Rh site distance for efficient oxygen reduction reaction. Sci China Chem 2024; 67:1352-1359. [DOI: 10.1007/s11426-023-1889-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2025]
|
9
|
Cheng Z, Cheng W, Lin XN, Zhang RH, Yan LY, Tian GX, Shen XY, Zhou XW. Synthesis of MnOOH and its application in a supporting hexagonal Pd/C catalyst for the oxygen reduction reaction. NANOSCALE 2023; 16:373-383. [PMID: 38063775 DOI: 10.1039/d3nr04724e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
With the expansion of global energy problems and the deepening of research on oxygen reduction reaction (ORR) in alkaline media, the development of low cost and high electrocatalytic performance catalysts has become a research hotspot. In this study, a hexagonal Pd-C-MnOOH composite catalyst was prepared by using the triblock copolymer P123 as the reducing agent and protective agent, sucrose as the carbon source and self-made MnOOH as the carrier under hydrothermal conditions. When the Pd load is 20% and the C/MnOOH ratio is 1 : 1, the 20% Pd-C-MnOOH-1 : 1 catalyst obtained by the one-step method has the highest ORR activity and stability in the alkaline system. At 1600 rpm, the limiting diffusion current density and half-wave potential of the 20% Pd-C-MnOOH-1 : 1 electrocatalyst are -4.78 mA cm-2 and 0.84 V, respectively, which are better than those of the commercial 20%Pd/C catalyst. According to the Koutecky-Levich (K-L) equation and the linear fitting results, the electron transfer number of the 20%Pd-C-MnOOH-1 : 1 electrocatalyst for the oxygen reduction reaction is 3.8, which is similar to that of a 4-electron process. After 1000 cycles, the limiting diffusion current density of the 20%Pd-C-MnOOH-1 : 1 catalyst is -4.61 mA cm-2, which only decreases by 3.7%, indicating that the 20%Pd-C-MnOOH-1 : 1 catalyst has good stability. The reason for the improvement of the ORR performance of the Pd-C-MnOOH composite catalyst is the improvement of the conductivity of the carbon layer formed by original carbonization, the regular hexagonal highly active Pd particles and the synergistic catalytic effect between Pd and MnOOH. The method of introducing triblock copolymers in the synthesis of oxides and metal-oxide composite catalysts is expected to be extended to other electrocatalysis fields.
Collapse
Affiliation(s)
- Zheng Cheng
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Wei Cheng
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Xin-Ning Lin
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Rong-Hua Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Luo-Yi Yan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Gui-Xian Tian
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Xiao-Yu Shen
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Xin-Wen Zhou
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
10
|
Kim DH, Cha JH, Chong S, Cho SH, Shin H, Ahn J, Jeon D, Kim J, Choi SY, Kim ID. Flash-Thermal Shock Synthesis of Single Atoms in Ambient Air. ACS NANO 2023. [PMID: 37801574 DOI: 10.1021/acsnano.3c02968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Single-atom catalysts feature interesting catalytic activity toward applications that rely on surface reactions such as electrochemical energy storage, catalysis, and gas sensors. However, conventional synthetic approaches for such catalysts require extended periods of high-temperature annealing in vacuum systems, limiting their throughput and increasing their production cost. Herein, we report an ultrafast flash-thermal shock (FTS)-induced annealing technique (temperature > 2850 °C, <10 ms duration, and ramping/cooling rates of ∼105 K/s) that operates in an ambient-air environment to prepare single-atom-stabilized N-doped graphene. Melamine is utilized as an N-doping source to provide thermodynamically favorable metal-nitrogen bonding sites, resulting in a uniform and high-density atomic distribution of single metal atoms. To demonstrate the practical utility of the single-atom-stabilized N-doped graphene produced by the FTS method, we showcased their chemiresistive gas sensing capabilities and electrocatalytic activities. Overall, the air-ambient, ultrafast, and versatile (e.g., Co, Ni, Pt, and Co-Ni dual metal) FTS method provides a general route for high-throughput, large area, and vacuum-free manufacturing of single-atom catalysts.
Collapse
Affiliation(s)
- Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Antivirus and Air-Quality Control, KAIST Institute Nanocentury, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jun-Hwe Cha
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Advanced Materials Discovery towards 3D Displays Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sanggyu Chong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Su-Ho Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Antivirus and Air-Quality Control, KAIST Institute Nanocentury, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Antivirus and Air-Quality Control, KAIST Institute Nanocentury, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Antivirus and Air-Quality Control, KAIST Institute Nanocentury, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dogyeong Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Antivirus and Air-Quality Control, KAIST Institute Nanocentury, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Sung-Yool Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Advanced Materials Discovery towards 3D Displays Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Antivirus and Air-Quality Control, KAIST Institute Nanocentury, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Multicore-shell structure CuxCoy-Fe alloy nitrogen doped mesoporous hollow carbon nanotubes composites for oxygen reduction reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Hierarchical meso-micro porous FeNC derived from tripolycyanamide-based microporous polymer as efficient electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 2023; 633:265-274. [PMID: 36455434 DOI: 10.1016/j.jcis.2022.11.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Designing porous FeNC nanomaterials with highly efficient active sites is an effective strategy for constructing high-performance oxygen reduction reaction (ORR) electrocatalysts. N-containing porous organic polymers (POPs) have emerged as promising candidates for the preparation of porous FeNC catalysts. Here, N-rich tripolycyanamide-based microporous polymer (TCAMP)-coated SiO2 nanospheres (SiO2@TACMP) were prepared as the precursors of an Fe-N doped hierarchical meso-micro porous carbon (Fe-N-HMC) electrocatalyst for the ORR. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) characterizations demonstrated that the Fe-N-HMC catalyst possessed a higher content percentage of Fe-Nx active sites and a better distribution of Fe nanoparticles than its Fe-N doped microporous carbon (Fe-N-MC) counterpart. N2 adsorption-desorption isotherm analysis showed that Fe-N-HMC catalyst exhibited a hierarchical meso-micro porous system, with a Brunauer-Emmett-Teller (BET) surface area (SBET) of 733 m2 g-1 (∼2 times of Fe-N-MC's SBET). As a result, Fe-N-HMC catalyst presented a highly efficient ORR performance with a half-wave potential of 0.856 mV, which is similar to the commercial grade 20 wt% Pt/C catalyst and superior to the Fe-N-MC catalyst. Moreover, the as-synthesized Fe-N-HMC catalyst displayed a better durability and methanol tolerance than the commercial Pt/C catalyst. Therefore, Fe-N-HMC shows great promise as an ORR catalyst for fuel batteries and metal-air cells due to its low-cost, high activity, and good stability.
Collapse
|
13
|
Xing Z, Shi K, Parsons ZS, Feng X. Interplay of Active Sites and Microenvironment in High-Rate Electrosynthesis of H 2O 2 on Doped Carbon. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Zhuo Xing
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Kaige Shi
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Zackary S. Parsons
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaofeng Feng
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
- Renewable Energy and Chemical Transformations (REACT) Cluster, University of Central Florida, Orlando, Florida 32816, United States
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
14
|
Lorca S, Torres J, Serrano JL, Pérez J, Abad J, Santos F, Fernández Romero AJ. Bifunctional P-Containing RuO 2 Catalysts Prepared from Surplus Ru Co-Ordination Complexes and Applied to Zn/Air Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:115. [PMID: 36616027 PMCID: PMC9824568 DOI: 10.3390/nano13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
An innovative synthetic route that involves the thermal treatment of selected Ru co-ordination complexes was used to prepare RuO2-based materials with catalytic activity for oxygen reduction (ORR) and oxygen evolution (OER) reactions. Extensive characterization confirmed the presence of Ru metal and RuP3O9 in the materials, with an improved electrocatalytic performance obtained from calcinated [(RuCl2(PPh3)3]. A mechanistic approach for the obtention of such singular blends and for the synergetic contribution of these three species to electrocatalysis is suggested. Catalysts added to carbon-based electrodes were also tested in all-solid and flooded alkaline Zn/air batteries. The former displayed a specific discharge capacity of 10.5 A h g-1 at 250 mA g-1 and a power density of 4.4 kW kg-1 cm-2. Besides, more than 800 discharge/charge cycles were reached in the flooded alkaline Zn/air battery.
Collapse
Affiliation(s)
- Sebastián Lorca
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain
| | - Javier Torres
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain
| | - José L. Serrano
- Departamento de Ingeniería Química, Área de Química Inorgánica, Universidad Politécnica de Cartagena, Plaza del Hospital 1, 30203 Cartagena, Spain
| | - José Pérez
- Departamento de Ingeniería Química, Área de Química Inorgánica, Universidad Politécnica de Cartagena, Plaza del Hospital 1, 30203 Cartagena, Spain
| | - José Abad
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain
| | - Florencio Santos
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain
| | - Antonio J. Fernández Romero
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía, Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Spain
| |
Collapse
|
15
|
Marra E, Grimler H, Montserrat-Sisó G, Wreland Lindström R, Wickman B, Lindbergh G, Lagergren C. Oxygen reduction reaction kinetics on a Pt thin layer electrode in AEMFC. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Probing the relationship between bulk and local environments to understand impacts on electrocatalytic oxygen reduction reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Xie F, Gao Y, Zhang J, Bai H, Zhang J, Li Z, Zhu W. A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: Characteristics and mechanism. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Nair AN, Sanad MF, Jayan R, Gutierrez G, Ge Y, Islam MM, Hernandez-Viezcas JA, Zade V, Tripathi S, Shutthanandan V, Ramana CV, T Sreenivasan S. Lewis Acid Site Assisted Bifunctional Activity of Tin Doped Gallium Oxide and Its Application in Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202648. [PMID: 35900063 DOI: 10.1002/smll.202202648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The enhanced safety, superior energy, and power density of rechargeable metal-air batteries make them ideal energy storage systems for application in energy grids and electric vehicles. However, the absence of a cost-effective and stable bifunctional catalyst that can replace expensive platinum (Pt)-based catalyst to promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air cathode hinders their broader adaptation. Here, it is demonstrated that Tin (Sn) doped β-gallium oxide (β-Ga2 O3 ) in the bulk form can efficiently catalyze ORR and OER and, hence, be applied as the cathode in Zn-air batteries. The Sn-doped β-Ga2 O3 sample with 15% Sn (Snx =0.15 -Ga2 O3 ) displayed exceptional catalytic activity for a bulk, non-noble metal-based catalyst. When used as a cathode, the excellent electrocatalytic bifunctional activity of Snx =0.15 -Ga2 O3 leads to a prototype Zn-air battery with a high-power density of 138 mW cm-2 and improved cycling stability compared to devices with benchmark Pt-based cathode. The combined experimental and theoretical exploration revealed that the Lewis acid sites in β-Ga2 O3 aid in regulating the electron density distribution on the Sn-doped sites, optimize the adsorption energies of reaction intermediates, and facilitate the formation of critical reaction intermediate (O*), leading to enhanced electrocatalytic activity.
Collapse
Affiliation(s)
- Aruna Narayanan Nair
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Mohamed F Sanad
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Environmental Sciences and Engineering, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Guillermo Gutierrez
- Center for Advanced Materials Research (CMR), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Yulu Ge
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Jose A Hernandez-Viezcas
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Vishal Zade
- Center for Advanced Materials Research (CMR), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Shalini Tripathi
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Vaithiyalingam Shutthanandan
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA
| | - Chintalapalle V Ramana
- Center for Advanced Materials Research (CMR), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Sreeprasad T Sreenivasan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
19
|
Panomsuwan G, Hussakan C, Kaewtrakulchai N, Techapiesancharoenkij R, Serizawa A, Ishizaki T, Eiad-Ua A. Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction. RSC Adv 2022; 12:17481-17489. [PMID: 35765431 PMCID: PMC9194922 DOI: 10.1039/d2ra02079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
A massive amount of animal biomass is generated daily from livestock farms, agriculture, and food industries, causing environmental and ecological problems. The conversion of animal biomass into value-added products has recently gained considerable interest in materials science research. Herein, horse manure (HM) was utilized as a precursor for synthesizing nitrogen-doped carbons (NCs) via hydrothermal ammonia treatment and the post pyrolysis process. The ammonia concentration varied between 0.5, 1.0, and 1.5 M in the hydrothermal process. From the comprehensive characterization results, horse manure-derived nitrogen-doped carbons (HMNCs) exhibited an amorphous phase and a hierarchical nanoporous structure. The specific surface area decreased from 170.1 to 66.6 m2 g-1 as the ammonia concentration increased due to micropore deterioration. The nitrogen content was 0.90 atom% even with no ammonia treatment, indicating self-nitrogen doping. With hydrothermal ammonia treatment, the nitrogen content slightly enhanced up to 1.54 atom%. The electrocatalytic activity for the oxygen reduction reaction (ORR) of HMNCs in an alkaline solution was found to be related to nitrogen doping content and porous structure. The ORR activity of HMNCs mainly proceeded via a combination of two- and four-electron pathways. Although the ORR activity of HMNCs was still not satisfactory and comparable to that of a commercial Pt/carbon catalyst, it showed better long-term durability. The results obtained in this work provide the potential utilization of HM as a precursor for ORR catalysts and other related applications.
Collapse
Affiliation(s)
- Gasidit Panomsuwan
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
- Special Research Unit for Biomass Conversion Technology for Energy and Environmental Materials, Kasetsart University Bangkok 10900 Thailand
| | - Chadapat Hussakan
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
| | - Napat Kaewtrakulchai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University Bangkok 10900 Thailand
| | - Ratchatee Techapiesancharoenkij
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- International Collaborative Education Program for Materials Technology, Education, and Research (ICE-Matter), ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Kasetsart University Bangkok 10900 Thailand
- Special Research Unit for Biomass Conversion Technology for Energy and Environmental Materials, Kasetsart University Bangkok 10900 Thailand
| | - Ai Serizawa
- Department of Materials Science and Engineering, Faculty of Engineering, Shibaura Institute of Technology Tokyo 135-8548 Japan
| | - Takahiro Ishizaki
- Department of Materials Science and Engineering, Faculty of Engineering, Shibaura Institute of Technology Tokyo 135-8548 Japan
| | - Apiluck Eiad-Ua
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
| |
Collapse
|
20
|
Ding H, Wang P, Su C, Liu H, Tai X, Zhang N, Lv H, Lin Y, Chu W, Wu X, Wu C, Xie Y. Epitaxial Growth of Ultrathin Highly Crystalline Pt-Ni Nanostructure on a Metal Carbide Template for Efficient Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109188. [PMID: 35077589 DOI: 10.1002/adma.202109188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Structure engineering strategies such as core-shell and hollow nanostructures are effective pathways to improve the utilization of noble metals for catalysis. However, nowadays materials design based on these strategies still largely rely on precious metal templates. Herein, the epitaxial growth of highly crystalline Pt3 Ni overlayer on earth-abundant nickel carbide is reported, forming Ni3 C@Pt3 Ni core-shell nanoparticles with a well-defined interface through a new lattice-match-directed synthetic strategy. Derived from such core-shell nanostructures, ultrathin highly crystalline Pt3 Ni nanocages have an advantageous configuration of oxygen reduction reaction (ORR)-favored facets and inherently high active surface area for the ORR, bringing high mass activity and specific activity as much as 4.71 A mgPt -1 and 5.14 mA cm-2 , which are 26 and 20 times to that of commercial Pt/C, respectively. This novel epitaxial growth of platinum opens up new avenues to rationally design highly active and economical electrocatalysts.
Collapse
Affiliation(s)
- Hui Ding
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peng Wang
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Caijie Su
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongfei Liu
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaolin Tai
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Nan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Haifeng Lv
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yue Lin
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Changzheng Wu
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230026, P. R. China
| | - Yi Xie
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230026, P. R. China
| |
Collapse
|
21
|
Wang M, Feng Z. Interfacial processes in electrochemical energy systems. Chem Commun (Camb) 2021; 57:10453-10468. [PMID: 34494049 DOI: 10.1039/d1cc01703a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrochemical energy systems such as batteries, water electrolyzers, and fuel cells are considered as promising and sustainable energy storage and conversion devices due to their high energy densities and zero or negative carbon dioxide emission. However, their widespread applications are hindered by many technical challenges, such as the low efficiency and poor long-term cyclability, which are mostly affected by the changes at the reactant/electrode/electrolyte interfaces. These interfacial processes involve ion/electron transfer, molecular/ion adsorption/desorption, and complex interface restructuring, which lead to irreversible modifications to the electrodes and the electrolyte. The understanding of these interfacial processes is thus crucial to provide strategies for solving those problems. In this review, we will discuss different interfacial processes at three representative interfaces, namely, solid-gas, solid-liquid, and solid-solid, in various electrochemical energy systems, and how they could influence the performance of electrochemical systems.
Collapse
Affiliation(s)
- Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA.
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
22
|
Wang J, Zhao CX, Liu JN, Ren D, Li BQ, Huang JQ, Zhang Q. Quantitative kinetic analysis on oxygen reduction reaction: A perspective. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Almodóvar P, Santos F, González J, Ramírez-Castellanos J, González-Calbet JM, Díaz-Guerra C, Fernández Romero AJ. Study of Cr2O3 nanoparticles supported on carbonaceous materials as catalysts for O2 reduction reaction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Xu S, Wang Z, Dull S, Liu Y, Lee DU, Lezama Pacheco JS, Orazov M, Vullum PE, Dadlani AL, Vinogradova O, Schindler P, Tam Q, Schladt TD, Mueller JE, Kirsch S, Huebner G, Higgins D, Torgersen J, Viswanathan V, Jaramillo TF, Prinz FB. Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007885. [PMID: 34110653 PMCID: PMC11468935 DOI: 10.1002/adma.202007885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The design and fabrication of lattice-strained platinum catalysts achieved by removing a soluble core from a platinum shell synthesized via atomic layer deposition, is reported. The remarkable catalytic performance for the oxygen reduction reaction (ORR), measured in both half-cell and full-cell configurations, is attributed to the observed lattice strain. By further optimizing the nanoparticle geometry and ionomer/carbon interactions, mass activity close to 0.8 A mgPt -1 @0.9 V iR-free is achievable in the membrane electrode assembly. Nevertheless, active catalysts with high ORR activity do not necessarily lead to high performance in the high-current-density (HCD) region. More attention shall be directed toward HCD performance for enabling high-power-density hydrogen fuel cells.
Collapse
Affiliation(s)
- Shicheng Xu
- Department of Mechanical EngineeringStanford UniversityStanfordCA94305USA
| | - Zhaoxuan Wang
- Department of Material Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Sam Dull
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Yunzhi Liu
- Department of Material Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Dong Un Lee
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | | | - Marat Orazov
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | | | - Anup Lal Dadlani
- Department of Mechanical and Industrial EngineeringNorwegian University of Science and TechnologyTrondheim7491Norway
| | - Olga Vinogradova
- Chemical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Peter Schindler
- Department of Material Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Qizhan Tam
- Department of Mechanical EngineeringStanford UniversityStanfordCA94305USA
| | | | | | | | | | - Drew Higgins
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| | - Jan Torgersen
- Department of Mechanical and Industrial EngineeringNorwegian University of Science and TechnologyTrondheim7491Norway
| | - Venkatasubramanian Viswanathan
- Chemical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | | | - Fritz B. Prinz
- Department of Mechanical EngineeringStanford UniversityStanfordCA94305USA
- Department of Material Science and EngineeringStanford UniversityStanfordCA94305USA
- Department of Mechanical and Industrial EngineeringNorwegian University of Science and TechnologyTrondheim7491Norway
| |
Collapse
|
25
|
Oxygen reduction limited by surface diffusion at a rotating ring-disk electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Oxygen reduction reaction (ORR) electrocatalysts in constructed wetland-microbial fuel cells: Effect of different carbon-based catalyst biocathode during bioelectricity production. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Paton-Carrero A, de la Osa A, Sanchez P, Rodriguez-Gomez A, Romero A. Towards new routes to increase the electrocatalytic activity for oxygen reduction reaction of n-doped graphene nanofibers. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Meirinho S, Ferraria A, do Rego AB, Fernandes A, Viana A, Fernandes J, Oliveira M. Electrochemical properties of oxygen-enriched carbon-based nanomaterials. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Samira S, Camayang JCA, Nacy AM, Diaz M, Meira SM, Nikolla E. Electrochemical oxygen reduction on layered mixed metal oxides: Effect of B-site substitution. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Ning X, Li Y, Ming J, Wang Q, Wang H, Cao Y, Peng F, Yang Y, Yu H. Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chem Sci 2018; 10:1589-1596. [PMID: 30842821 PMCID: PMC6371757 DOI: 10.1039/c8sc04596h] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022] Open
Abstract
Prydinic and graphitic nitrogen both contributes to the activity for oxygen reduction reaction (ORR).
Nitrogen-doped carbon materials (NCs) are extensively studied for the oxygen reduction reaction (ORR). However, the nature of active sites of pyridinic nitrogen (NP) or graphitic nitrogen (NG) on NCs is still under debate. Herein, we demonstrated that the ORR activity of NCs in alkaline media depended on the electronic synergism between NP and NG, rather than any single type of N. We measured the transferable electrons of NCs by absorption spectroscopy using 7′7′8′8-tetracyanoquinodimethane as an electron acceptor. The transferable electron amount of NCs is relevant to either NP or NG, leading to the [NP] : [NG] ratio as an electron transfer descriptor of NCs in a reverse volcano curve manner across nineteen NCs. The similar dependence of ORR activity on the [NP] : [NG] ratio of NCs was also discovered, demonstrating the synergistic effect of NP and NG. These results provide a new angle to understand the nature of ORR activity of NCs and optimize the ORR catalyst.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering , Guangdong Provincial Key Lab of Green Chemical Product Technology , South China University of Technology , Guangzhou 510640 , China . ; ; Tel: +86 20 8711 4916.,School of Chemistry and Chemical Engineering , Lingnan Normal University , Zhanjiang 524048 , China
| | - Yuhang Li
- School of Chemistry and Chemical Engineering , Guangdong Provincial Key Lab of Green Chemical Product Technology , South China University of Technology , Guangzhou 510640 , China . ; ; Tel: +86 20 8711 4916
| | - Jingyan Ming
- School of Chemistry and Chemical Engineering , Guangdong Provincial Key Lab of Green Chemical Product Technology , South China University of Technology , Guangzhou 510640 , China . ; ; Tel: +86 20 8711 4916
| | - Qiang Wang
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Hongjuan Wang
- School of Chemistry and Chemical Engineering , Guangdong Provincial Key Lab of Green Chemical Product Technology , South China University of Technology , Guangzhou 510640 , China . ; ; Tel: +86 20 8711 4916
| | - Yonghai Cao
- School of Chemistry and Chemical Engineering , Guangdong Provincial Key Lab of Green Chemical Product Technology , South China University of Technology , Guangzhou 510640 , China . ; ; Tel: +86 20 8711 4916
| | - Feng Peng
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou , 510006 , China
| | - Yanhui Yang
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Hao Yu
- School of Chemistry and Chemical Engineering , Guangdong Provincial Key Lab of Green Chemical Product Technology , South China University of Technology , Guangzhou 510640 , China . ; ; Tel: +86 20 8711 4916
| |
Collapse
|
31
|
Melin F, Sabuncu S, Choi SK, Leprince A, Gennis RB, Hellwig P. Role of the tightly bound quinone for the oxygen reaction of cytochrome
bo
3
oxidase from
Escherichia coli. FEBS Lett 2018; 592:3380-3387. [DOI: 10.1002/1873-3468.13263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Frédéric Melin
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| | - Sinan Sabuncu
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| | - Sylvia K. Choi
- Center for Biophysics and Computational Biology University of Illinois Urbana IL USA
- Department of Biochemistry University of Illinois Urbana IL USA
| | - Agathe Leprince
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| | | | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140 Laboratoire de Bioélectrochimie et Spectroscopie CNRS‐Université de Strasbourg France
| |
Collapse
|
32
|
Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. Nat Catal 2018. [DOI: 10.1038/s41929-018-0118-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Mathivanan J, Chang Z, Galagedera SKK, Flechsig GU. Thermoelectrochemistry of Paracetamol - Studied at Directly Heated Micro-wire and Rotating Disk Electrodes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Johnsi Mathivanan
- University at Albany - SUNY, Dept. of Chemistry; 1400 Washington Ave, Albany NY 12222 USA
| | - Zhihua Chang
- University at Albany - SUNY, Dept. of Chemistry; 1400 Washington Ave, Albany NY 12222 USA
| | | | - Gerd-Uwe Flechsig
- University at Albany - SUNY, Dept. of Chemistry; 1400 Washington Ave, Albany NY 12222 USA
- Gensoric GmbH; Gerhart-Hauptmann-Str. 23 D-18055 Rostock Germany
| |
Collapse
|
34
|
Zeradjanin AR. Frequent Pitfalls in the Characterization of Electrodes Designed for Electrochemical Energy Conversion and Storage. CHEMSUSCHEM 2018; 11:1278-1284. [PMID: 29436179 DOI: 10.1002/cssc.201702287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Focus on the importance of energy conversion and storage boosted research interest in various electrocatalytic materials. Characterization of solid-liquid interfaces during faradaic and non-faradaic processes is routinely conducted in many laboratories worldwide on a daily basis. This can be deemed as a very positive tendency. However, careful insight into modern literature suggests frequent misuse of electroanalytical tools. This can have very negative implications and postpone overall development of electrocatalytic materials with the desired properties. This work points out some of the frequent pitfalls in electrochemical characterization, suggests potential solutions, and above all encourages comprehensive analysis and in-depth thinking about electrochemical phenomena.
Collapse
Affiliation(s)
- Aleksandar R Zeradjanin
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058, Erlangen, Germany
- Max-Planck-Institut für Eisenforschung GmbH, Department of Interface Chemistry and Surface Engineering, Max-Planck-Strasse 1, 40237, Düsseldorf, Germany
| |
Collapse
|