1
|
Zhang W, Qin Y, Wang W, Liu F, Meng F, Chen F, Zhu N, Aihaiti A, Zhang M. Construction of Au@PB NPs doped graphene paper as flexible electrode for real-time monitoring of living cells and biosensing platform. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Wen N, Zhang K, Feng J, Zhou Z, Chen S, Wang Y, Liu S, Kuang Q, Dong Y, Zhao Y. One-step in situ hydrothermal synthesis of layered Ni3Ge2O5(OH)4/carbon nanocomposite with superior sodium storage properties. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Zhang R, Tang Z, Wang H, Sun D, Tang Y, Xie Z. The fabrication of hierarchical MoO2@MoS2/rGO composite as high reversible anode material for lithium ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Yu J, Huang D, Liu Y, Luo H. A ternary Ag–TiO2/reduced graphene oxide nanocomposite as the anode material for lithium ion batteries. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00576e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ag–TiO2/rGO nanocomposite exhibits enhanced electrochemical performance with good stability, as the intra-/inter-grain connectivity is increased between nanosized Ag and TiO2 particles on the reduced graphene oxide surface.
Collapse
Affiliation(s)
- Jiuling Yu
- Department of Chemical and Materials Engineering
- New Mexico State University
- Las Cruces
- USA
| | - Di Huang
- Department of Chemical and Materials Engineering
- New Mexico State University
- Las Cruces
- USA
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
| | - Hongmei Luo
- Department of Chemical and Materials Engineering
- New Mexico State University
- Las Cruces
- USA
| |
Collapse
|
5
|
Huang DL, Wang J, Yuan HQ, Guo HS, Ying X, Zhang H, Liu HY. Noncovalently copper-porphyrin functionalized reduced graphene oxide for sensitive electrochemical detection of dopamine. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nanocomposite of an electron-deficient flat tetrakis-(ethoxycarbonyl) porphyrin copper(II) (Cu-TECP) and reduced grapheme oxide (RGO) was prepared and used for electrochemical detection of dopamine (DA). The prepared nanocomposite was characterized by scanning electron microscopy, Raman spectroscopy, FT-IR spectroscopy, ultraviolet-visible spectroscopy and electrochemical impedance spectroscopy. Electrochemical studies of the modified glass carbon electrode (GCE) were carried out by the cyclic voltammetry and differential pulse voltammograms (DPV) methods. The RGO/Cu-TECP/GCE exhibited enhanced electrocatalytic activity towards the detection of dopamine (DA). The detection limit was 0.58 μM, while the linear range was from 2 to 200 μM ([Formula: see text] 0.997).
Collapse
Affiliation(s)
- Dong-Lan Huang
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Jian Wang
- Department of Applied Physics, South China University of Technology, Guangzhou 510641, China
| | - Hui-Qing Yuan
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Hui-Shi Guo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Xiao Ying
- Department of Applied Physics, South China University of Technology, Guangzhou 510641, China
| | - Hao Zhang
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Hai-Yang Liu
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|