1
|
Yang Y, Hu X, Zi F, Chen S, Zhao L, Li X, Lin Y. Effectively adsorb Au(S 2O 3) 23- using aminoguanidine as trapping group from thiosulfate solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38298-38309. [PMID: 38797755 DOI: 10.1007/s11356-024-33710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Thiosulfate gold leaching is one of the most promising green cyanide-free gold extraction processes; however, the difficulty of recovering Au(I) from the leaching system hinders its further development. This study prepared aminoguanidine-functionalized microspheres (AGMs) via a one-step reaction involving nucleophilic substitution between aminoguanidine hydrochloride and chloromethylated polystyrene microspheres and used AGMs to adsorb Au(I) from thiosulfate solutions. Scanning electron microscopy, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to analyze the structure and properties of AGMs. Experiments were designed to investigate the effects of pH, temperature, initial Au(I), and thiosulfate concentrations on the gold adsorption performance of AGMs. Results demonstrated that AGMs can efficiently adsorb Au(I) from thiosulfate solutions in a wide pH range. The adsorption process conforms to the pseudo-second-order kinetic model and Langmuir isotherm model, with a maximum capacity of 22.03 kg/t. Acidic thiourea is an effective desorbent, and after four adsorption-desorption cycles, the adsorption rate of Au(I) by AGMs is 78.63%, which shows AGMs have good cyclic application potential. Based on the results of characterization, experiments, and density functional theory calculations, the mechanism for the adsorption of [Au(S2O3)2]3- on AGMs involves anion exchange. Importantly, AGMs exhibited satisfactory adsorption property for Au(I) in practical Cu2+-NH3(en)-S2O32- systems. This study provided experimental reference for the recovery of Au(I) from thiosulfate solution.
Collapse
Affiliation(s)
- Yihuai Yang
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xianzhi Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Futing Zi
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Shuliang Chen
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Li Zhao
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xinrong Li
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yue Lin
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
2
|
Shin SS, Jung Y, Jeon S, Park SJ, Yoon SJ, Jung KW, Choi JW, Lee JH. Efficient recovery and recycling/upcycling of precious metals using hydrazide-functionalized star-shaped polymers. Nat Commun 2024; 15:3889. [PMID: 38719796 PMCID: PMC11079046 DOI: 10.1038/s41467-024-48090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
There is a growing demand for adsorption technologies for recovering and recycling precious metals (PMs) in various industries. Unfortunately, amine-functionalized polymers widely used as metal adsorbents are ineffective at recovering PMs owing to their unsatisfactory PM adsorption performance. Herein, a star-shaped, hydrazide-functionalized polymer (S-PAcH) is proposed as a readily recoverable standalone adsorbent with high PM adsorption performance. The compact chain structure of S-PAcH containing numerous hydrazide groups with strong reducibility promotes PM adsorption by enhancing PM reduction while forming large, collectable precipitates. Compared with previously reported PM adsorbents, commercial amine polymers, and reducing agents, S-PAcH exhibited significantly higher adsorption capacity, selectivity, and kinetics toward three PMs (gold, palladium, and platinum) with model, simulated, and real-world feed solutions. The superior PM recovery performance of S-PAcH was attributed to its strong reduction capability combined with its chemisorption mechanism. Moreover, PM-adsorbed S-PAcH could be refined into high-purity PMs via calcination, directly utilized (upcycled) as catalysts for dye reduction, or regenerated for reuse, demonstrating its high practical feasibility. Our proposed PM adsorbents would have a tremendous impact on various industrial sectors from the perspectives of environmental protection and sustainable development.
Collapse
Affiliation(s)
- Seung Su Shin
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Youngkyun Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sungkwon Jeon
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sung-Joon Park
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Su-Jin Yoon
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Energy & Environment Technology, KIST School, Korea National University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Zhang L, Fan X, Wang J, Zhang C, Laipan M, Guo J. Tailoring hierarchical nanostructures of tannin acid/alginate beads for straightforward selective recovery of high-purity Au(0) from aqueous solution. Carbohydr Polym 2024; 324:121534. [PMID: 37985108 DOI: 10.1016/j.carbpol.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
The utilization of biomass materials with functional properties and rational porous structures holds significant potential for the recovery of precious metals from secondary resources, while facing challenges in achieving rapid reduction and high recovery rates of metallic Au(0). Herein, a novel concept of achieving high-purity Au(0) efficiently by tailoring tannin acid (TA) architecture and porous structure of TA-functionalized alginate beads (P-TOSA). Optimized by structural engineering, the hierarchically nanostructured P-TOSA beads demonstrate exceptional selectivity and recovery capacity (756.1 ± 2.7 mg/g at pH 5), while maintaining a recovery efficiency of over 99 % across a broad range of pH values (1.0-8.0) through the synergistic combination of chelation-based chemisorption and phenolic groups-based redox reaction. Notably, the TA-based nanostructure-boosted reduced Au(0) served as nucleation sites, facilitating elongation and migration of gold crystals across the vein network, thus forming a shell composed with 90.4 ± 0.4 % of element gold. UV radiation exposure could further generate a dynamic redox system and expedite Au (III) reduction to ultra-high purity Au(0) (93.3 ± 1.1 %) via abnormal grain growth mode. Therefore, this study presents a practical and straightforward approach utilizing biomass microbeads for recycling precious metals in metallic form without the use of toxic eluents or additional reductants.
Collapse
Affiliation(s)
- Lei Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Xiaohu Fan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Jiayuan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Minwang Laipan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China.
| |
Collapse
|
4
|
Cenci MP, Eidelwein EM, Veit HM. Composition and recycling of smartphones: A mini-review on gaps and opportunities. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1512-1528. [PMID: 37052313 DOI: 10.1177/0734242x231164324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
After more than a decade since smartphones became consolidated in the market, many recycling solutions have been proposed to deal with them. To continue developing useful solutions and enable adjustment of routes, this mini-review aims to analyse the current research scenario, presenting relevant gaps, trends and opportunities. From a structured searching and screening procedure, a vast source of data was arranged and is available to extract useful information (43 studies on composition and 93 studies on recycling). The study provides discussions about the history of smartphone development, constituent materials and recycling methods for different components, comparisons between feature phones and smartphones and others. Among some conclusions, the authors highlight the lack of studies on pre-extractive methods, green chemistry, recovery of critical and precious metals, determination of priority materials for recovery and solutions for entire devices. In the end, a list containing six research gaps for composition studies and seven research gaps for recycling studies is provided and may be seen as opportunities for future research.
Collapse
Affiliation(s)
- Marcelo Pilotto Cenci
- LACOR, Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Estela Moschetta Eidelwein
- LACOR, Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Hugo Marcelo Veit
- LACOR, Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
5
|
Plaisathit D, Setthakarn K, Sirirak J, Swanglap P, Kamkaew A, Maitarad P, Burgess K, Wanichacheva N. Novel near-infrared Aza-BODIPY-based fluorescent and colorimetric sensor for highly selective detection of Au3+ in aqueous media, human skin and brain cells. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
6
|
Seif R, Salem FZ, Allam NK. E-waste recycled materials as efficient catalysts for renewable energy technologies and better environmental sustainability. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023:1-36. [PMID: 36691418 PMCID: PMC9848041 DOI: 10.1007/s10668-023-02925-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Waste from electrical and electronic equipment exponentially increased due to the innovation and the ever-increasing demand for electronic products in our life. The quantities of electronic waste (e-waste) produced are expected to reach 44.4 million metric tons over the next five years. Consequently, the global market for electronics recycling is expected to reach $65.8 billion by 2026. However, electronic waste management in developing countries is not appropriately handled, as only 17.4% has been collected and recycled. The inadequate electronic waste treatment causes significant environmental and health issues and a systematic depletion of natural resources in secondary material recycling and extracting valuable materials. Electronic waste contains numerous valuable materials that can be recovered and reused to create renewable energy technologies to overcome the shortage of raw materials and the adverse effects of using non-renewable energy resources. Several approaches were devoted to mitigate the impact of climate change. The cooperate social responsibilities supported integrating informal collection and recycling agencies into a well-structured management program. Moreover, the emission reductions resulting from recycling and proper management systems significantly impact climate change solutions. This emission reduction will create a channel in carbon market mechanisms by trading the CO2 emission reductions. This review provides an up-to-date overview and discussion of the different categories of electronic waste, the recycling methods, and the use of high recycled value-added (HAV) materials from various e-waste components in green renewable energy technologies.
Collapse
Affiliation(s)
- Rania Seif
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 Egypt
| | - Fatma Zakaria Salem
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 Egypt
| |
Collapse
|
7
|
Fan M, Li S, Deng H, Zhang X, Luo G, Huang Z, Chen M. Separation and recovery of iridium(IV) from simulated secondary resource leachate by extraction - electrodeposition. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
A systematic and comparative study of copper, nickel and cobalt-ammonia catalyzed thiosulfate processes for eco-friendly and efficient gold extraction from an oxide gold concentrate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Guo J, Fan X, Li Y, Yu S, Zhang Y, Wang L, Ren X. Mechanism of selective gold adsorption on ion-imprinted chitosan resin modified by thiourea. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125617. [PMID: 33743379 DOI: 10.1016/j.jhazmat.2021.125617] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Thiourea-modified chitosan-imprinted resin (IM-TUCS) and a corresponding nonimprinted resin (NIM-TUCS) were synthesized and characterized using adsorption experiments. The adsorption results showed that adsorption reached equilibrium within 4 h. The adsorption data were better fitted using the Langmuir model (R2>0.99), and the gold adsorption capacities of IM-TUCS and NIM-TUCS were 933.2 and 373.7 mg·g-1, respectively. The IM-TUCS adsorbent was more suitable for gold than other coexisting anions and cations. The possible mechanism underlying Au(Ⅲ) adsorption on IM-TUCS was further investigated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction analyses. The protonation of the amino group on the resin under low pH conditions promoted Au(Ⅲ) adsorption; O, N and S in the C‒OH, C˭S and C-NH2 groups contained in the IM-TUCS coordinated with Au(III) ions. The cross-linking of the imprinted resin provided holes that could hold Au(III), thus the imprinted resin supported more Au(III). The adsorption capacity of the IM-TUCS for Au(III) was significantly higher than that of the NIM-TUCS, which is attributed to the cross-linking of the imprinted resin. Moreover, the IM-TUCS showed specific recognition capabilities for Au(III). After elution with the eluent, IM-TUCS was reused for four cycles with a gold recovery rate of approximately 93%, revealing its high potential economic value.
Collapse
Affiliation(s)
- Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Xiaohu Fan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yanping Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Shenghui Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yi Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
10
|
Kim K, Candeago R, Rim G, Raymond D, Park AHA, Su X. Electrochemical approaches for selective recovery of critical elements in hydrometallurgical processes of complex feedstocks. iScience 2021; 24:102374. [PMID: 33997673 PMCID: PMC8091062 DOI: 10.1016/j.isci.2021.102374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Critical minerals are essential for the ever-increasing urban and industrial activities in modern society. The shift to cost-efficient and ecofriendly urban mining can be an avenue to replace the traditional linear flow of virgin-mined materials. Electrochemical separation technologies provide a sustainable approach to metal recovery, through possible integration with renewable energy, the minimization of external chemical input, as well as reducing secondary pollution. In this review, recent advances in electrochemically mediated technologies for metal recovery are discussed, with a focus on rare earth elements and other key critical materials for the modern circular economy. Given the extreme heterogeneity of hydrometallurgically-derived media of complex feedstocks, we focus on the nature of molecular selectivity in various electrochemically assisted recovery techniques. Finally, we provide a perspective on the challenges and opportunities for process intensification in critical materials recycling, especially through combining electrochemical and hydrometallurgical separation steps.
Collapse
Affiliation(s)
- Kwiyong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Riccardo Candeago
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guanhe Rim
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Darien Raymond
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.,Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, NY 10027, USA
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|