1
|
Lenzi C, Masetti A, Gualandi I, Scavetta E, Rigamonti L, Mazzoni R. Advances in Electrocatalyzed Water Oxidation by Molecular Complexes of First Row Transition Metals. CHEM REC 2025:e202400266. [PMID: 40270253 DOI: 10.1002/tcr.202400266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Energy transition toward sustainable, alternative, and affordable solutions is likely to be one of the major challenges of the anthropocene era. The oxygen evolution reaction (OER) is a pivotal electrocatalytic process essential for advancing renewable energy conversion and storage technologies, including water splitting, artificial photosynthesis, metal-air batteries, and fuel cells. Electrocatalytic pathways can significantly reduce the overall energy requirements of these devices, particularly focusing on the energy demands associated with water splitting for hydrogen production. This review, after introducing the state of the art in heterogeneous catalysis, will be devoted to the description of molecular water oxidation electrocatalysts (MWOCs), focusing on the recent advancements on catalysts composed of various metals, including Mn, Co, Cu, Ni, and Fe, in combination with a range of mono- and multidentate ligands. Critical insights are presented and discussed to provide readers with suggestions for ligand design in assisted catalysis. These observations aim to identify synergistic solutions that could enhance technological maturity by reducing energy absorption while improving stability and efficiency.
Collapse
Affiliation(s)
- Chiara Lenzi
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| | - Andrea Masetti
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| | - Luca Rigamonti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Rita Mazzoni
- Department of Industrial Chemistry "Toso Montanari", via Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna, via Gobetti, 85, 40129, Bologna, Italy
| |
Collapse
|
2
|
Raj M, Padhi SK. Decoding the Catalytic Potential of Dinuclear 1 st-Row Transition Metal Complexes for Proton Reduction and Water Oxidation. CHEM REC 2025; 25:e202400170. [PMID: 39659073 DOI: 10.1002/tcr.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Indexed: 12/12/2024]
Abstract
The growing interest in renewable energy sources has led to a significant focus on artificial photosynthesis as a means of converting solar energy into lucrative and energy-dense carbonaceous fuels. First-row transition metals have thus been brought to light in the search for efficient and high-performance homogenous molecule catalysts that can accelerate energy transformation and reduce overpotentials during the catalytic process. Their dinuclear complexes have opportunities to enhance the efficiency and stability of these molecular catalysts, primarily for the hydrogen evolution reaction (HER) and water oxidation reaction (WOR). Recently, our group improved the catalytic activity, efficiencies, and stability of dinuclear molecular catalysts, particularly toward HER. Although one dinuclear complex has been tested for WOR, it demonstrated activity as water oxidation precatalysts. First-row transition metals are a great option for sustainable catalysis because they are readily available, reasonably priced, and have multifaceted coordination chemistry. Examples of these metals are cobalt, copper, and manganese. The structure-catalytic performance relationships of this first-row transition metal-based dinuclear catalysts are noteworthily interpreted in this account, providing avenues for optimizing their performance and advancing the development of sustainable and effective energy conversion technologies.
Collapse
Affiliation(s)
- Manaswini Raj
- Artificial Photosynthesis Laboratory, Science Block, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, INDIA
- Department of Chemistry, Presidency University, Itgalpura, Yelahanka, Bangalore, Karnataka, 560064, INDIA
| | - Sumanta Kumar Padhi
- Artificial Photosynthesis Laboratory, Science Block, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, INDIA
| |
Collapse
|
3
|
Kumar Singh A, Roy L. Toward Rational Design of Mononuclear Nickel Complexes as Water Oxidation Catalysts Exploring the Ligand Effects on the Rate-Determining Step. Chemphyschem 2024; 25:e202400533. [PMID: 38925604 DOI: 10.1002/cphc.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The major impediment in realizing a carbon-neutral hydrogen fuel economy is the cost and inadequacy of contemporary electrochemical water splitting approaches towards the energy intensive oxygen evolution reaction (OER). The O-O bond formation in the water oxidation half-cell reaction is both kinetically and thermodynamically challenging and amplifies the overpotential requirement in most of the active water oxidation catalysts. Herein, density functional theory is employed to interrogate 20 Ni(II) complexes, out of which 17 are in silico designed molecular water oxidation catalysts, coordinated to electron-rich tetra-anionic redox non-innocent phenylenebis(oxamidate) and dibenzo-1,4,7,10-tetraazacyclododecane-2,3,8,9-tetraone parent ligands and their structural analogues, and identify the role of substituent changes or ligand effects in the order of their reactivity. Importantly, our computational mechanistic analyses predict that the activation free energy of the rate-determining O-O bond formation step obeys an inverse scaling relationship with the global electrophilicity index of the intermediate generated on two-electron oxidation of the starting complex. Additionally, the driving force is directly correlated with this OER descriptor which enables two-dimensional volcano representation and thereby extrapolation towards the ideal substitution with the chosen ligand. Our study, therefore, establish fundamental insights to overcome the imperative overpotential issue with simple and precise computational rationalization preceding experimental validation.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, India
| |
Collapse
|
4
|
Wang J, Ping Y, Chen Y, Liu S, Dong J, Ruan Z, Liang X, Lin J. Improvement of electrocatalytic water oxidation activity of novel copper complex by modulating the axial coordination of phosphate on metal center. Dalton Trans 2024; 53:5222-5229. [PMID: 38391031 DOI: 10.1039/d3dt03409g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The structure of organic ligand scaffolds of copper complexes critically affects their electrocatalytic properties toward water oxidation, which is widely regarded as the bottleneck of overall water splitting. Herein, two novel mononuclear Cu complexes, [Cu(dmabpy)](ClO4)2 (1, dmabpy = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine) and [Cu(mabpy)](ClO4)2 (2, mabpy = 6,6'-bis(methylaminomethyl)-2,2'-bipyridine), with four-coordinated distorted planar quadrilateral geometry were synthesized and explored as efficient catalysts for electrochemical oxygen evolution in phosphate buffer solution. Interestingly, complex 1 with a tertiary amine group catalyzes water oxidation with lower onset overpotential and better catalytic performance, while complex 2 containing a secondary amine fragment displays much lower catalytic activity under identical conditions. The water oxidation catalytic mechanism of the two complexes is proposed based on the electrochemical test results. Experimental methods indicate that phosphate coordinated on the Cu center of the two complexes inhibits their reaction with substrate water molecules, resulting in lower activity toward water oxidation. Electrochemical tests reveal that the structure of the coordinated nitrogen atom improves the catalytic performance of the Cu complexes by modulating the coordination of phosphate on the Cu center, indicating that a minor alteration of the coordinating nitrogen atom of the ligand has a detrimental effect on the catalytic performance of electrochemical WOCs based on transition metal complexes.
Collapse
Affiliation(s)
- Jieying Wang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Yezi Ping
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Yanmei Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Shanshan Liu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Jinfeng Dong
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Xiangming Liang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
5
|
Li G, Ahlquist MSG. O-O bond formation via radical coupling in a dinuclear iron water oxidation catalyst with high catalytic activity. Dalton Trans 2024; 53:2456-2459. [PMID: 38269597 DOI: 10.1039/d3dt03178k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The use of iron-based catalysts for the water oxidation reaction is highly attractive due to the high abundance of iron. While many molecular catalysts have been made, most show limited activity and short lifetimes. An exception with higher activity was presented by Thummel and co-workers in 2015. Herein we present a study on the feasibility of the coupling of two O centered radicals originating from the two subunits of the dinuclear catalyst. The reaction pathway includes the oxidation to the active species FeIV-O-FeIV but avoids further high potential oxidations which previous mechanistic proposals have relied on.
Collapse
Affiliation(s)
- Ge Li
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.
| |
Collapse
|
6
|
Jian H, Lu M, Zheng H, Yan S, Wang M. Electrochemical Water Oxidation and CO 2 Reduction with a Nickel Molecular Catalyst. Molecules 2024; 29:578. [PMID: 38338323 PMCID: PMC10856054 DOI: 10.3390/molecules29030578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mimicking the photosynthesis of green plants to combine water oxidation with CO2 reduction is of great significance for solving energy and environmental crises. In this context, a trinuclear nickel complex, [NiII3(paoH)6(PhPO3)2]·2ClO4 (1), with a novel structure has been constructed with PhPO32- (phenylphosphonate) and paoH (2-pyridine formaldehyde oxime) ligands and possesses a reflection symmetry with a mirror plane revealed by single-crystal X-ray diffraction. Bulk electrocatalysis demonstrates that complex 1 can homogeneously catalyze water oxidation and CO2 reduction simultaneously. It can catalyze water oxidation at a near-neutral condition of pH = 7.45 with a high TOF of 12.2 s-1, and the Faraday efficiency is as high as 95%. Meanwhile, it also exhibits high electrocatalytic activity for CO2 reduction towards CO with a TOF of 7.84 s-1 in DMF solution. The excellent electrocatalytic performance of the water oxidation and CO2 reduction of complex 1 could be attributed to the two unique µ3-PhPO32- bridges as the crucial factor for stabilizing the trinuclear molecule as well as the proton transformation during the catalytic process, while the oxime groups modulate the electronic structure of the metal centers via π back-bonding. Therefore, apart from the cooperation effect of the three Ni centers for catalysis, simultaneously, the two kinds of ligands in complex 1 can also synergistically coordinate the central metal, thereby significantly promoting its catalytic performance. Complex 1 represents the first nickel molecular electrocatalyst for both water oxidation and CO2 reduction. The findings in this work open an avenue for designing efficient molecular electrocatalysts with peculiar ligands.
Collapse
Affiliation(s)
| | | | | | | | - Mei Wang
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China; (H.J.); (M.L.); (H.Z.); (S.Y.)
| |
Collapse
|
7
|
Wei XZ, Liao FJ, Xu X, Ye C, Tung CH, Wu LZ. In situ assembly of nickel-based ultrathin catalyst film for water oxidation. Chem Commun (Camb) 2023; 59:11109-11112. [PMID: 37646081 DOI: 10.1039/d3cc03110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A nickel-based ultrathin catalyst film is assembled in situ from a solution of Ni(OAc)2 and a Schiff-base ligand L. The resulting ultrathin catalyst film shows a low overpotential of 330 mV, a steady current of 7 mA cm-2 for water oxidation over 10 h.
Collapse
Affiliation(s)
- Xiang-Zhu Wei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang-Jie Liao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Gorantla KR, Mallik BS. Copper Complex Catalyzed Two-Electron and Proton Shuttle Mechanism of O-O Bond Formation from DFT-Based Metadynamics Simulations. J Phys Chem A 2023; 127:3788-3795. [PMID: 37094099 DOI: 10.1021/acs.jpca.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We performed first-principles metadynamics simulations to explore the mechanistic pathway of oxygen-oxygen bond formation catalyzed by cis-bis(hydroxo) and cis-(hydroxo)oxo copper complexes. The ligands of considered complexes involve modified bipyridine ligands with oxo and hydroxo groups on 6, 6' positions. The study focuses on the kinetics and thermodynamics of the oxygen-oxygen bond formation. The individual migration of the proton to the hydroxyl group and hydroxide to the oxo and hydroxo moieties of the complexes was examined. The proton transfer requires more kinetic barrier than the hydroxide migration. The nature of the electronic density was analyzed with the help of spin population analysis. The molecular orbitals and natural orbital analysis were carried out to examine the nature of the orbitals involved in the oxygen-oxygen bond formation. The σ*(dx2-y2-px) molecular orbital of the Cu-O or Cu-OH bond overlaps with the pz orbital of the hydroxide ion in forming the oxygen-oxygen bond. The two-electron two-centered (2e--2C) bond is observed in the oxygen-oxygen bond formation. In the oxidation process, these ligands stabilize the electron density from the water or hydroxide ion. These redox-active ligands also help stabilize the formed hydrogen peroxide or peroxide complexes.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangaredddy, Telangana 502285, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangaredddy, Telangana 502285, India
| |
Collapse
|
9
|
Bidirectional O2 reduction/H2O oxidation boosted by a pentadentate pyridylalkylamine copper(II) complex. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Gorantla KR, Mallik BS. Three-Electron Two-Centered Bond and Single-Electron Transfer Mechanism of Water Splitting via a Copper-Bipyridine Complex. J Phys Chem A 2023; 127:160-168. [PMID: 36594604 DOI: 10.1021/acs.jpca.2c07630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report the atomistic and electronic details of the mechanistic pathway of the oxygen-oxygen bond formation catalyzed by a copper-2,2'-bipyridine complex. Density functional theory-based molecular dynamics simulations and enhanced sampling methods were employed for this study. The thermodynamics and electronic structure of the oxygen-oxygen bond formation are presented in this study by considering the cis-bishydroxo, [CuIII(bpy)(OH)2]+, and cis-(hydroxo)oxo, [CuIV(bpy)(OH)(═O)]+, complexes as active catalysts. In the cis-bishydroxo complex, the hydroxide transfer requires a higher kinetic barrier than the proton transfer process. In the case of [CuIV(bpy)(OH)(═O)]+, the proton transfer requires a higher free energy than the hydroxide one. The peroxide bond formation is thermodynamically favorable for the [CuIV(bpy)(OH)(═O)]+ complex compared with the other. The hydroxide ion is transferred to one of the Cu-OH moieties, and the proton is transferred to the solvent. The free energy barrier for this migration is higher than that for the former transfer. From the analysis of molecular orbitals, it is found that the electron density is primarily present on the water molecules near the active sites in the highest occupied molecular orbital (HOMO) state and lowest unoccupied molecular orbital (LUMO) of the ligands. Natural bond orbital (NBO) analysis reveals the electron transfer process during the oxygen-oxygen bond formation. The σ*Cu(dxz)-O(p) orbitals are involved in the oxygen-oxygen bond formation. During the bond formation, three-electron two-centered (3e--2C) bonds are observed in [CuIII(bpy)(OH)2]+ during the transfer of the hydroxide before the formation of the oxygen-oxygen bond.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy502284, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy502284, Telangana, India
| |
Collapse
|
11
|
Chen X, Liao X, Dai C, Zhu L, Hong L, Yang X, Ruan Z, Liang X, Lin J. Modulating the electrocatalytic activity of mononuclear nickel complexes toward water oxidation by tertiary amine group. Dalton Trans 2022; 51:18678-18684. [PMID: 36448634 DOI: 10.1039/d2dt03381j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water oxidation is the bottleneck of water splitting, which is a promising strategy for hydrogen production. Therefore, it is significant to develop efficient water oxidation catalysts. Herein, electrochemical water oxidation catalyzed by three nickel complexes, namely [Ni(bptn)(H2O)](ClO4)2 (1), [Ni(mbptn)(CH3CN)](ClO4)2 (2), and [Ni(tmbptn)(H2O)](ClO4)2 (3) (bptn = 1,9-bis(2-pyridyl)-2,5,8-triazanonane, mbptn = 5-methyl-1,9-bis(2-pyridyl)-2,5,8-triazanonane, and tmbptn = 1,9-bis(2-pyridyl)-2,5,8-triazanonane), is studied under near-neutral condition (pH 9.0). Meanwhile, the homogeneous catalytic behaviors of the three mononuclear nickel complexes were investigated and confirmed by scanning electron microscopy, energy dispersive spectrometry, X-ray photoelectron spectroscopy and electrochemical method. Complex 1 stabilized by a pentadentate ligand with three N-H fragments homogeneously catalyzes water oxidation to oxygen with the lowest onset overpotential. Complex 2 stabilized by a similar ligand with two N-H groups and one N-CH3 group exhibits relatively higher onset overpotential but higher catalytic current and turnover frequency. However, complex 3 with three N-CH3 coordination environment shows the highest onset overpotential and the highest catalytic current at higher potential. Comparison of catalytic behaviors and ligand structure of the three complexes reveals that the methyl group on the polypyridine amine ligand affects the water oxidation activity of the complexes obviously. The electronic effect of N-CH3 coordination environment leads to higher redox potential of the metal center and potential demand for water oxidation, while it leads to higher reaction activity of high-valent intermediates, which account for higher catalytic current and efficiency of water oxidation. This work reveals that electrocatalytic water oxidation performance of nickel complexes can be finely modulated by constructing suitable N-CH3 coordination.
Collapse
Affiliation(s)
- Xiaoli Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Xuehong Liao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Chang Dai
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Lihong Zhu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Li Hong
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Xueli Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Xiangming Liang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
12
|
Meng X, Li R, Yang J, Xu S, Zhang C, You K, Ma B, Guan H, Ding Y. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64144-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 322] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
14
|
Raj M, Padhi SK. Water Oxidation by a Neoteric Dinuclear Mn(II) Electrocatalyst in Aqueous Medium. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manaswini Raj
- Indian Institute of Technology (Indian School of Mines): Indian Institute of Technology Chemistry and Chemical Biology INDIA
| | - Sumanta Kumar Padhi
- Indian Institute of Technology (Indian School of Mines), Dhanbad Department of Chemistry and Chemical Biology Science BlockDepartment of Chemistry and Chemical Biology 826004 Dhanbad INDIA
| |
Collapse
|
15
|
Wu P, Yan S, Fang W, Wang B. Molecular Mechanism of the Mononuclear Copper Complex-Catalyzed Water Oxidation from Cluster-Continuum Model Calculations. CHEMSUSCHEM 2022; 15:e202102508. [PMID: 35080143 DOI: 10.1002/cssc.202102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cluster-continuum model calculations were conducted to decipher the mechanism of water oxidation catalyzed by a mononuclear copper complex. Among various O-O bond formation mechanisms investigated in this study, the most favorable pathway involved the nucleophilic attack of OH- onto the .+ L-CuII -OH- intermediate. During such process, the initial binding of OH- to the proximity of .+ L-CuII -OH- would result in the spontaneous oxidation of OH- , leading to OH⋅ radical and CuII -OH- species. The further O-O coupling between OH⋅ radical and CuII -OH- was associated with a barrier of 14.8 kcal mol-1 , leading to the formation of H2 O2 intermediate. Notably, the formation of "CuIII -O.- " species, a widely proposed active species for O-O bond formation, was found to be thermodynamically unfavorable and could be bypassed during the catalytic reactions. On the basis the present calculations, a catalytic cycle of the mononuclear copper complex-catalyzed water oxidation was proposed.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| |
Collapse
|
16
|
Hsu WC, Wang YH. Homogeneous Water Oxidation Catalyzed by First-Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential. CHEMSUSCHEM 2022; 15:e202102378. [PMID: 34881515 DOI: 10.1002/cssc.202102378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Indexed: 06/13/2023]
Abstract
The utilization of earth-abundant low-toxicity metal ions in the construction of highly active and efficient molecular catalysts promoting the water oxidation reaction is important for developing a sustainable artificial energy cycle. However, the kinetic and thermodynamic properties of the currently available molecular water oxidation catalysts (MWOCs) have not been comprehensively investigated. This Review summarizes the current status of MWOCs based on first-row transition metals in terms of their turnover frequency (TOF, a kinetic property) and overpotential (η, a thermodynamic property) and uses the relationship between log(TOF) and η to assess catalytic performance. Furthermore, the effects of the same ligand classes on these MWOCs are discussed in terms of TOF and η, and vice versa. The collective analysis of these relationships provides a metric for the direct comparison of catalyst systems and identifying factors crucial for catalyst design.
Collapse
Affiliation(s)
- Wan-Chi Hsu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
17
|
Akbari MSA, Zand Z, Aleshkevych P, Jagličić Z, Najafpour MM. Finding the True Catalyst for Water Oxidation at Low Overpotential in the Presence of a Metal Complex. Inorg Chem 2022; 61:3801-3810. [PMID: 35179022 DOI: 10.1021/acs.inorgchem.2c00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The design of molecular-based catalysts for oxygen-evolution reaction (OER) requires more investigations for the true catalyst to be found. First-row transition metal complexes are extensively investigated for OER, but the role of these metal complexes as a true catalyst is doubtful. Some doubts have been expressed about the role of first-row transition metal complexes for OER at high overpotentials (η > 450). Generally, the detection of the true catalyst has so far been focused on high overpotentials (η > 450) because at low overpotentials (η < 450), many methods are not sensitive enough to detect small amounts of heterogeneous catalysts on the electrode surface during the first seconds of the reaction. Ni(II) phthalocyanine-tetra sulfonate tetrasodium (1) is in moderate conditions (at 20-50 °C and pH 5-13) in the absence of electrochemical driving forces, which could make it noteworthy for OER. Herein, the results of OER in the presence of 1 at low overpotentials under alkaline conditions are presented. In addition, in the presence of Ni complexes, using an Fe ion is introduced as a new method for detecting Ni (hydr)oxide under OER. Our experiments indicate that in the presence of a homogeneous OER (pre)catalyst, a deep investigation is necessary to rule out the heterogeneous catalysts formed. Our approach is a roadmap in the field of catalysis to understand the OER mechanism in the presence of a molecular Ni-based catalyst design. Our results shown in this study are likely to open up new perspectives and discussion on many molecular catalysts in a considerable part of the chemistry community.
Collapse
Affiliation(s)
- Mohammad Saleh Ali Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Zahra Zand
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Zvonko Jagličić
- Faculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics, and Mechanics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
18
|
Novel Dithiolene Nickel Complex Catalysts for Electrochemical Hydrogen Evolution Reaction for Hydrogen Production in Nonaqueous and Aqueous Solutions. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00708-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThree molecular catalysts based on mononuclear nickel(II) complexes with square planar geometries, [BzPy]2[Ni(mnt)2] (1), [BzPy]2[Ni(i-mnt)2] (2), and [BzPy]2[Ni(tdas)2] (3) (BzPy = benzyl pyridinium) are synthesized by the reaction of NiCl2∙6H2O, [BzPy]Br, and Na2(mnt)/Na2(i-mnt)/Na2(tdas) (mnt = 1,2-dicyanoethylene-1,2-dithiolate for (1), i-mnt = 2,2-dicyanoethylene-1,1-dithiolate for (2), and tdas = 1,2,5-thiadiazole-3,4-dithiolate for (3)), respectively. The structures and compositions of these three catalysts are characterized by XRD, elemental analysis, FT-IR, and ESI-MS. The electrochemical properties and the corresponding catalytic activities of these three catalysts are studied by cyclic voltammetry. The controlled-potential electrolysis with gas chromatography analysis confirms the hydrogen production with a turnover frequency (TOF) of 116.89, 165.51, and 189.16 moles of H2 per mole of catalyst per hour at a potential of − 0.99 V (versus SHE) in acetonitrile solutions containing the catalysts, respectively. In a neutral buffer solution, these three molecular catalysts exhibit a TOF of 411.85, 488.76, and 555.06 mol of H2 per mole of catalyst per hour at a potential of − 0.49 V (versus SHE), respectively, indicating that Complex 3 constitutes the better active catalyst than Complexes 1 and 2. For fundamental understanding, a catalytic HER mechanism is also proposed.
Graphical abstract
Collapse
|
19
|
Lin J, Zheng S, Hong L, Yang X, Lv W, Li Y, Dai C, Liu S, Ruan Z. Efficient homogeneous electrochemical water oxidation by a copper( ii) complex with a hexaaza macrotricyclic ligand. NEW J CHEM 2022. [DOI: 10.1039/d2nj02449g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper complex [CuII(L)](ClO4)2 with a hexaaza macrotricyclic ligand is found to be an efficient homogeneous electrocatalyst for water oxidation with onset overpotential of 480 mV and a turnover frequency of 3.65 s−1.
Collapse
Affiliation(s)
- Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Shenke Zheng
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Li Hong
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Xueli Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Weixiang Lv
- Weifang Synovtech New Material Technology CO., LTD, Weifang, China
| | - Yichang Li
- Weifang Synovtech New Material Technology CO., LTD, Weifang, China
| | - Chang Dai
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Shanshan Liu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
20
|
Zhang P, Wang P, Wang W, Wu Q, Xiao M, Alberto R, Zhang Y, Cui C. Efficient Alkaline Water Oxidation with a Regenerable Nickel Pseudo-Complex. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48661-48668. [PMID: 34619966 DOI: 10.1021/acsami.1c13609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient and robust electrocatalysts are required for the oxygen evolution reaction (OER). Photosystem II-inspired synthetic transition metal complexes have shown promising OER activity in water-poor or mild conditions, yet challenges remain in the improvement of current density and performance stability for practical applications in alkaline electrolytes in contrast to solid-state oxide catalysts. Here, we report that a nickel pseudo-complex (bpy)zNiOxHy (bpy = 2,2'-bipyridine) catalyst, which bridges solid oxide and molecular catalysts, exhibits the highest OER activity among nickel-based catalysts with a turnover frequency of 1.1 s-1 at an overpotential of 0.30 volts, even outperforming iron-incorporated nickel (oxy)hydroxide under an identical nickel mass load. Benefiting from the strong coordination between bpy and nickel, this (bpy)zNiOxHy catalyst exhibits long-term stability in highly alkaline media at 1.0 mA cm-2 for over 200 h and at 20 mA cm-2 for over 60 h. Our findings indicate that dynamically coordinating a small amount of bpy in the catalyst layer efficiently sustains highly active nickel sites for water oxidation, demonstrating a general strategy for improving the activity of transition metal sites with active ligands beyond the incorporation of metal cations to form double-layered hydroxides.
Collapse
Affiliation(s)
- Peikun Zhang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pai Wang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Wang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtza Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Roger Alberto
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Yanning Zhang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtza Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
21
|
A new [δ-Mo8O26]4−-based NiⅡ-coordination polymer constructed from a pyridinum ligand as a full spectrum responsive photocatalyst and its electrocatalytic properties. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts 2021. [DOI: 10.3390/catal11091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic tetranuclear manganese-calcium-oxo cluster in the photosynthetic reaction center, photosystem II, provides an excellent blueprint for light-driven water oxidation in nature. The water oxidation reaction has attracted intense interest due to its potential as a renewable, clean, and environmentally benign source of energy production. Inspired by the oxygen-evolving complex of photosystem II, a large of number of highly innovative synthetic bio-inspired molecular catalysts are being developed that incorporate relatively cheap and abundant metals such as Mn, Fe, Co, Ni, and Cu, as well as Ru and Ir, in their design. In this review, we briefly discuss the historic milestones that have been achieved in the development of transition metal catalysts and focus on a detailed description of recent progress in the field.
Collapse
|
23
|
Gorantla KR, Mallik BS. Mechanistic Insight into the O 2 Evolution Catalyzed by Copper Complexes with Tetra- and Pentadentate Ligands. J Phys Chem A 2021; 125:6461-6473. [PMID: 34282907 DOI: 10.1021/acs.jpca.1c06008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mononuclear complexes ([(bztpen)Cu] (BF4)2 (bztpen = N-benzyl-N,N',N'-tris (pyridin-2-yl methyl ethylenediamine))) and ([(dbzbpen)Cu(OH2)] (BF4)2 (dbzbpen = N,N'-dibenzyl-N,N'-bis(pyridin-2-ylmethyl) ethylenediamine)) have been reported as water oxidation catalysts in basic medium (pH = 11.5). We explore the O2 evolution process catalyzed by these copper catalysts with various ligands (L) by applying the first-principles molecular dynamics simulations. First, the oxidation of catalysts to the metal-oxo intermediates [LCu(O)]2+ occurs through the proton-coupled electron transfer (PCET) process. These intermediates are involved in the oxygen-oxygen bond formation through the water-nucleophilic addition process. Here, we have considered two types of oxygen-oxygen bond formation. The first one is the transfer of the hydroxide of the water molecule to the Cu═O moiety; the proton transfer to the solvent leads to the formation of the peroxide complex ([LCu(OOH)]+). The other is the formation of the hydrogen peroxide complex ([LCu(HOOH)]2+) by the transfer of proton and hydroxide of the water molecule to the metal-oxo intermediate. The formation of the peroxide complex requires less activation free energy than hydrogen peroxide formation for both catalysts. We found two transition states in the well-tempered metadynamics simulations: one for proton transfer and another for hydroxide transfer. In both cases, the proton transfer requires higher free energy. Following the formation of the oxygen-oxygen bond, we study the release of the dioxygen molecule. The formed peroxide and hydrogen peroxide complexes are converted into the superoxide complex ([LCu(OO)]2+) through the transfer of proton, electron, and PCET processes. The superoxide complex releases an oxygen molecule upon the addition of a water molecule. The free energy of activation for the release of the dioxygen molecule is lesser than that of the oxygen-oxygen bond formation. When we observe the entire water oxidation process, the oxygen-oxygen bond formation is the rate-determining step. We calculated the rates of reaction by using the Eyring equation and found them to be close to the experimental values.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
24
|
Yin X, Zhang S, Wang J, Li J, Chen F, Yao S, Fan Y, Wang M. Bioinspired cobalt molecular electrocatalyst for water oxidation coupled with carbon dioxide reduction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaomeng Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong China
| | - Shifu Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong China
| | - Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong China
| | - Jingjing Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong China
| | - Fangfang Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong China
| | - Shuo Yao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering Ocean University of China Qingdao Shandong China
| |
Collapse
|
25
|
Two Novel Catalysts Based on Nickel-Substituted POMs Hybrids for Photocatalytic H2 Evolution from Water Splitting. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02112-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Shaghaghi Z, Kouhsangini PS, Mohammad‐Rezaei R. Water oxidation activity of azo‐azomethine‐based Ni (II), Co (II), and Cu (II) complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science Azarbaijan Shahid Madani University Tabriz 5375171379 Iran
| | - Parya Sallakh Kouhsangini
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science Azarbaijan Shahid Madani University Tabriz 5375171379 Iran
| | - Rahim Mohammad‐Rezaei
- Electrochemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science Azarbaijan Shahid Madani University Tabriz 5375171379 Iran
| |
Collapse
|
27
|
Zhang L, Mathew S, Hessels J, Reek JNH, Yu F. Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:234-250. [PMID: 32991076 PMCID: PMC7820963 DOI: 10.1002/cssc.202001876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Indexed: 05/06/2023]
Abstract
Strategies that enable the renewable production of storable fuels (i. e. hydrogen or hydrocarbons) through electrocatalysis continue to generate interest in the scientific community. Of central importance to this pursuit is obtaining the requisite chemical (H+ ) and electronic (e- ) inputs for fuel-forming reduction reactions, which can be met sustainably by water oxidation catalysis. Further possibility exists to couple these redox transformations to renewable energy sources (i. e. solar), thus creating a carbon neutral solution for long-term energy storage. Nature uses a Mn-Ca cluster for water oxidation catalysis via multiple proton-coupled electron-transfers (PCETs) with a photogenerated bias to perform this process with TOF 100∼300 s-1 . Synthetic molecular catalysts that efficiently perform this conversion commonly utilize rare metals (e. g., Ru, Ir), whose low abundance are associated to higher costs and scalability limitations. Inspired by nature's use of 1st row transition metal (TM) complexes for water oxidation catalysts (WOCs), attempts to use these abundant metals have been intensively explored but met with limited success. The smaller atomic size of 1st row TM ions lowers its ability to accommodate the oxidative equivalents required in the 4e- /4H+ water oxidation catalysis process, unlike noble metal catalysts that perform single-site electrocatalysis at lower overpotentials (η). Overcoming the limitations of 1st row TMs requires developing molecular catalysts that exploit biomimetic phenomena - multiple-metal redox-cooperativity, PCET and second-sphere interactions - to lower the overpotential, preorganize substrates and maintain stability. Thus, the ultimate goal of developing efficient, robust and scalable WOCs remains a challenge. This Review provides a summary of previous research works highlighting 1st row TM-based homogeneous WOCs, catalytic mechanisms, followed by strategies for catalytic activity improvements, before closing with a future outlook for this field.
Collapse
Affiliation(s)
- Lu‐Hua Zhang
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Simon Mathew
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joeri Hessels
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Fengshou Yu
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| |
Collapse
|
28
|
Hessels J, Masferrer‐Rius E, Yu F, Detz RJ, Klein Gebbink RJM, Reek JNH. Nickel is a Different Pickle: Trends in Water Oxidation Catalysis for Molecular Nickel Complexes. CHEMSUSCHEM 2020; 13:6629-6634. [PMID: 33090703 PMCID: PMC7756549 DOI: 10.1002/cssc.202002164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The development of novel water oxidation catalysts is important in the context of renewable fuels production. Ligand design is one of the key tools to improve the activity and stability of molecular catalysts. The establishment of ligand design rules can facilitate the development of improved molecular catalysts. In this paper it is shown that chemical oxidants can be used to probe oxygen evolution activity for nickel-based systems, and trends are reported that can improve future ligand design. Interestingly, different ligand effects were observed in comparison to other first-row transition metal complexes. For example, nickel complexes with secondary amine donors were more active than with tertiary amine donors, which is the opposite for iron complexes. The incorporation of imine donor groups in a cyclam ligand resulted in the fastest and most durable nickel catalyst of our series, achieving oxygen evolution turnover numbers up to 380 and turnover frequencies up to 68 min-1 in a pH 5.0 acetate buffer using Oxone as oxidant. Initial kinetic experiments with this catalyst revealed a first order in chemical oxidant and a half order in catalyst. This implies a rate-determining oxidation step from a dimeric species that needs to break up to generate the active catalyst. These findings lay the foundation for the rational design of molecular nickel catalysts for water oxidation and highlight that catalyst design rules are not generally applicable for different metals.
Collapse
Affiliation(s)
- Joeri Hessels
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Eduard Masferrer‐Rius
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Fengshou Yu
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Remko J. Detz
- Current address: TNO Energy Transition, Energy Transition StudiesRadarweg 601043 NTAmsterdamThe Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
29
|
Hessels J, Yu F, Detz RJ, Reek JNH. Potential- and Buffer-Dependent Catalyst Decomposition during Nickel-Based Water Oxidation Catalysis. CHEMSUSCHEM 2020; 13:5625-5631. [PMID: 32959962 PMCID: PMC7702101 DOI: 10.1002/cssc.202001428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The production of hydrogen by water electrolysis benefits from the development of water oxidation catalysts. This development process can be aided by the postulation of design rules for catalytic systems. The analysis of the reactivity of molecular complexes can be complicated by their decomposition under catalytic conditions into nanoparticles that may also be active. Such a misinterpretation can lead to incorrect design rules. In this study, the nickel-based water oxidation catalyst [NiII (meso-L)](ClO4 )2 , which was previously thought to operate as a molecular catalyst, is found to decompose to form a NiOx layer in a pH 7.0 phosphate buffer under prolonged catalytic conditions, as indicated by controlled potential electrolysis, electrochemical quartz crystal microbalance, and X-ray photoelectron spectroscopy measurements. Interestingly, the formed NiOx layer desorbs from the surface of the electrode under less anodic potentials. Therefore, no nickel species can be detected on the electrode after electrolysis. Catalyst decomposition is strongly dependent on the pH and buffer, as there is no indication of NiOx layer formation at pH 6.5 in phosphate buffer nor in a pH 7.0 acetate buffer. Under these conditions, the activity stems from a molecular species, but currents are much lower. This study demonstrates the importance of in situ characterization methods for catalyst decomposition and metal oxide layer formation, and previously proposed design elements for nickel-based catalysts need to be revised.
Collapse
Affiliation(s)
- Joeri Hessels
- HomogeneousSupramolecular and Bio-Inspired CatalysisVan ‘t Hoff institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Fengshou Yu
- HomogeneousSupramolecular and Bio-Inspired CatalysisVan ‘t Hoff institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Remko J. Detz
- TNO Energy Transition, Energy Transition StudiesRadarweg 601043 NTAmsterdam (TheNetherlands
| | - Joost N. H. Reek
- HomogeneousSupramolecular and Bio-Inspired CatalysisVan ‘t Hoff institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|
30
|
Computational mechanistic study on molecular catalysis of water oxidation by cyclam ligand-based iron complex. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02664-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Lee H, Wu X, Sun L. Homogeneous Electrochemical Water Oxidation at Neutral pH by Water-Soluble Ni II Complexes Bearing Redox Non-innocent Tetraamido Macrocyclic Ligands. CHEMSUSCHEM 2020; 13:3277-3282. [PMID: 32233069 DOI: 10.1002/cssc.202000153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Water oxidation is the bottleneck reaction in artificial photosynthesis. Exploring highly active and stable molecular water oxidation catalysts (WOCs) is still a great challenge. In this study, a water-soluble NiII complex bearing a redox non-innocent tetraamido macrocyclic ligand (TAML) is found to be an efficient electrocatalyst for water oxidation in neutral potassium phosphate buffer. Controlled-potential electrolysis experiments show that it can sustain at a steady current of approximately 0.2 mA cm-2 for >7 h at 1.75 V versus normal hydrogen electrode (NHE) without the formation of NiOx . Electrochemical and spectroelectrochemical tests show that the redox-active ligand, as well as HPO4 2- in the buffer, participate in the catalytic cycle. More importantly, catalytically active intermediate [NiIII (TAML2- )-O. ] is formed via several proton-coupled electron transfer processes and reacts with H2 O with the assistance of base to release molecular oxygen. Thus, the employment of redox non-innocent ligands is a useful strategy for designing effective molecular WOCs.
Collapse
Affiliation(s)
- Husileng Lee
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024, Dalian, P. R. China
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024, Dalian, P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024, Dalian, P. R. China
- Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
- Institute for Energy Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
32
|
Li Q, Ren Y, Xie Q, Wu M, Feng H, Zheng L, Zhang H, Long J, Wang T. Nickel (II) tetrapyridyl complexes as electrocatalysts and precatalysts for water oxidation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qi‐Jun Li
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Ya‐Jie Ren
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Qin Xie
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Min Wu
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Hua‐Xing Feng
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Li‐Mei Zheng
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Hua‐Xin Zhang
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
| | - Jin‐Qiao Long
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
- College of Chemistry and Environment Engineering Baise University Baise Guangxi 533000 China
| | - Tian‐Shun Wang
- College of Chemistry and Chemical Engineering Guangxi University No. 100, Daxue East Road Nanning Guangxi 530004 China
- Research Institute of agro‐products quality safety and testing technology Guangxi Academy of Agriculture Sciences Nanning Guangxi 530007 China
| |
Collapse
|
33
|
Zhang H, Tian W, Duan X, Sun H, Liu S, Wang S. Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904037. [PMID: 31793723 DOI: 10.1002/adma.201904037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Low-cost, nonprecious transition metal (TM) catalysts toward efficient water oxidation are of critical importance to future sustainable energy technologies. The advances in structure engineering of water oxidation catalysts (WOCs) with single TM centers as active sites, for example, single metallic molecular complexes (SMMCs), supported SMMCs, and single-atom catalysts (SACs) in recent reports are examined. The efforts made on these configurations in terms of design principle, advanced characterization, performances and theoretical studies, are critically reviewed. A clear roadmap with the correlations between the single-TM-site-based structures (coordination and geometric structure, TM species, support), and the catalytic performances in water oxidation is provided. The insights bridging SMMCs with SACs are also given. Finally, the challenges and opportunities in the single-TM-site catalysis are proposed.
Collapse
Affiliation(s)
- Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
34
|
Lee H, Wu X, Sun L. Copper-based homogeneous and heterogeneous catalysts for electrochemical water oxidation. NANOSCALE 2020; 12:4187-4218. [PMID: 32022815 DOI: 10.1039/c9nr10437b] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water oxidation is currently believed to be the bottleneck in the field of electrochemical water splitting and artificial photosynthesis. Enormous efforts have been devoted toward the exploration of water oxidation catalysts (WOCs), including homogeneous and heterogeneous catalysts. Recently, Cu-based WOCs have been widely developed because of their high abundance, low cost, and biological relevance. However, to the best of our knowledge, no review has been made so far on such types of catalysts. Thus, we have summarized the recent progress made in the development of homogeneous and heterogeneous Cu-based WOCs for electrochemical catalysis. Furthermore, the evaluations of catalytic activity, stability, and mechanism of these catalysts are carefully concluded and highlighted. We believe that this review can summarize the current progress in the field of Cu-based electrochemical WOCs and help in the design of more efficient and stable WOCs.
Collapse
Affiliation(s)
- Husileng Lee
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China.
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China.
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China. and Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden and Institute for Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, China
| |
Collapse
|
35
|
Shahadat HM, Younus HA, Ahmad N, Zhang S, Zhuiykov S, Verpoort F. Macrocyclic cyanocobalamin (vitamin B12) as a homogeneous electrocatalyst for water oxidation under neutral conditions. Chem Commun (Camb) 2020; 56:1968-1971. [DOI: 10.1039/c9cc08838e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homogeneous electrochemical water oxidation under neutral conditions using impressively stable vitamin B12.
Collapse
Affiliation(s)
- Hossain M. Shahadat
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| | - Hussein A. Younus
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University
- Changsha 410082
- China
- Chemistry Department, Faculty of Science, Fayoum University
- Fayoum 63514
| | - Nazir Ahmad
- Department of Chemistry, GC University Lahore
- Lahore 54000
- Pakistan
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University
- Changsha 410082
- China
| | - Serge Zhuiykov
- Ghent University, Global Campus Songdo, 119 Songdomunhwa-Ro, Yeonsu-Gu
- Incheon
- Korea
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| |
Collapse
|
36
|
Valizadeh A, Najafpour MM. Is nickel phosphide an efficient catalyst for the oxygen-evolution reaction at low overpotentials? NEW J CHEM 2020. [DOI: 10.1039/d0nj03701j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
At low overpotentials, the oxygen-evolution reaction by Ni2P in the presence of Fe ions was investigated.
Collapse
Affiliation(s)
- Amirreza Valizadeh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| |
Collapse
|
37
|
Aligholivand M, Shaghaghi Z, Bikas R, Kozakiewicz A. Electrocatalytic water oxidation by a Ni(ii) salophen-type complex. RSC Adv 2019; 9:40424-40436. [PMID: 35542637 PMCID: PMC9076273 DOI: 10.1039/c9ra08585h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/28/2019] [Indexed: 01/17/2023] Open
Abstract
A new mononuclear Ni(ii) complex, NiL (1), was synthesized from the reaction of Ni(OAc)2·4H2O and salophen-type N2O2-donor ligand, H2L (where H2L = 2,2'-((1E,1'E)-((4-chloro-5-methyl-1,2-phenylene)bis(azanylylidene))bis(methanylylidene))diphenol), in ethanol. The obtained complex was characterized by elemental analysis, spectroscopic techniques and single crystal X-ray analysis. The complex was studied as a water oxidizing catalyst and its electrocatalytic activity in the water oxidation reaction was tested in 0.5 M of borate buffer at pH = 3, 7 and 11 in a typical three-electrode setup with a carbon paste electrode modified by complex 1 as a working electrode. The linear sweep voltammetry (LSV) curves indicated that complex 1 has a much superior activity and only needs 21 mV vs. Ag/AgCl overvoltage to reach a geometrical catalytic current density of 2.0 mA cm-2 at pH = 11. The onset potential decreased from 1.15 V to 0.67 V vs. Ag/AgCl with an increase of pH from 3 to 13 under a constant current density of 1.0 mA cm-2. Then, to determine the true catalyst for the water oxidation reaction in the presence of complex 1 at pH = 3, 7 and 11, cyclic voltammetry was also performed. The continuous CVs for complex 1 at neutral and alkaline solutions showed significant progress for the water oxidation reaction. In addition, the amperometry tests exhibited excellent stability and high constant current density for water oxidation by CPE-complex 1 under electrochemical conditions at pH = 11 and 7. Although X-ray powder diffraction analysis did not show a pure and crystalline structure for NiO x , the scanning electron microscopy images showed that nickel oxide at pH = 11 and nickel oxide or other Ni-based compounds at pH = 7 are true water oxidizing catalysts on the surface of a CPE electrode. Moreover at pH = 3, no clear water oxidation or NiO x formation was observed.
Collapse
Affiliation(s)
- Mehri Aligholivand
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University P.O. Box 83714-161 Tabriz Iran
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University P.O. Box 83714-161 Tabriz Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University 34148-96818 Qazvin Iran
| | - Anna Kozakiewicz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun 87-100 Torun Poland
| |
Collapse
|
38
|
Bairagya MD, Bujol RJ, Elgrishi N. Fighting Deactivation: Classical and Emerging Strategies for Efficient Stabilization of Molecular Electrocatalysts. Chemistry 2019; 26:3991-4000. [PMID: 31710129 DOI: 10.1002/chem.201904499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/12/2022]
Abstract
Development of highly active molecular electrocatalysts for fuel-forming reactions has relied heavily on understanding mechanistic aspects of the electrochemical transformations. Careful fine-tuning of the ligand environment oriented mechanistic pathways towards higher activity and optimal product distribution for several catalysts. Unfortunately, many catalysts deactivate in bulk electrolysis conditions, diminishing the impact of the plethora of highly tuned molecular electrocatalytic systems. This Minireview covers classical and emerging methods developed to circumvent catalyst deactivation and degradation, with an emphasis on successes with molecular electrocatalysts.
Collapse
Affiliation(s)
- Monojit Das Bairagya
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Ryan J Bujol
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
39
|
Electrochemical studies of the MI/II and MII/III (M = Ni, Cu) couples in mono- to tetranuclear complexes with oxamato/oxamidato ligands. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Wang J, Liu Y, Mao X, Shi N, Zhang X, Wang H, Fan Y, Wang M. Two Trinuclear Cu
II
Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation. Chem Asian J 2019; 14:2685-2693. [DOI: 10.1002/asia.201900531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jin‐Miao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ya‐Rong Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xue‐Yang Mao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ning‐Ning Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Hui‐Sheng Wang
- Key Laboratory for Green Chemical Process of Ministry of EducationSchool of Chemistry and Environmental EngineeringWuhan Institute of Technology Wuhan 430074 P. R. China
| | - Yu‐Hua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| |
Collapse
|
41
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 443] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|
42
|
Garrido-Barros P, Grau S, Drouet S, Benet-Buchholz J, Gimbert-Suriñach C, Llobet A. Can Ni Complexes Behave as Molecular Water Oxidation Catalysts? ACS Catal 2019. [DOI: 10.1021/acscatal.8b03953] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pablo Garrido-Barros
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Campus
Sescelades, C/Marcel·lí Domingo, s/n, 43007 Tarragona, Spain
| | - Sergi Grau
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Samuel Drouet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
43
|
Du X, Shao Q, Zhang X. Cu-Co-M arrays on Ni foam as monolithic structured catalysts for water splitting: effects of co-doped S-P. Dalton Trans 2019; 48:1322-1331. [PMID: 30608092 DOI: 10.1039/c8dt04731f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Finding new methods to design environmentally friendly, highly stable, and robust oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts remains an extremely important challenge and affords several opportunities for exploiting the water-splitting process. In our work, Cu-Co-M (M = O, S, P, Se, S-P, and P-S) materials were grown in situ on three-dimensional (3D) porous nickel foam (NF) with good electrical conductivity by hydrothermal synthesis, vulcanization, selenylation, and phosphorization of the Cu-Co-precursor under an Ar atmosphere. Cu-Co-P-S/NF presents an overpotential value of 220 mV at 50 mA cm-2 for OER and that for Cu-Co-P-S/NF of 120 mV at 10 mA cm-2 for HER in an alkaline medium. In addition, considering the superior activities of Cu-Co-P-S/NF for OER and HER, the electrode pairing of Cu-Co-P-SOER//Cu-Co-P-SHER is designed for overall water splitting, and the experimental result shows that only a cell voltage of 1.55 V is needed to obtain a current density of 20 mA cm-2. According to the literature, this cell voltage is also among the lowest values that have been previously reported for electrocatalytic water splitting. Further, Cu-Co-P-S//Cu-Co-P-S exhibited efficient stability during a 20 h durability test without significant attenuation under alkaline conditions. By using XPS spectroscopy characterization, it was shown that Cu-Co-P-S presented the highest catalytic performance and long-term durability owing to the abundance of Co3+. The novelty of selecting the highest activity with the same catalyst for OER and HER from Cu-Co-M (M = O, S, P, Se, S-P, and P-S) in order to obtain a well-matched electrode pair, and therefore, simplifying the water-splitting device affords a wide range of possibilities for further exploitation of environmentally friendly and highly efficient electrode pairs.
Collapse
Affiliation(s)
- Xiaoqiang Du
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | | | | |
Collapse
|
44
|
Shahadat HM, Younus HA, Ahmad N, Rahaman MA, Khattak ZAK, Zhuiykov S, Verpoort F. Homogenous electrochemical water oxidation by a nickel(ii) complex based on a macrocyclic N-heterocyclic carbene/pyridine hybrid ligand. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01485c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrochemical water oxidation catalyzed by a homogeneous Ni–NHC/pyridine complex demonstrated electrolyte-dependent catalytic performances. The catalyst displayed a stable catalytic current of oxygen evolution in long-term bulk electrolysis.
Collapse
Affiliation(s)
- Hossain M. Shahadat
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| | - Hussein A. Younus
- School of Material Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
- Chemistry Department
| | - Nazir Ahmad
- School of Material Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- China
- Department of Chemistry
| | - Md. Abdur Rahaman
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| | - Zafar A. K. Khattak
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| | | | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| |
Collapse
|
45
|
Du X, Ma G, Zhang X. Oxygen vacancy-confined CoMoO4@CoNiO2 nanorod arrays for oxygen evolution with improved performance. Dalton Trans 2019; 48:10116-10121. [DOI: 10.1039/c9dt01378d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and DFT calculation results show that the presence of oxygen vacancies can decrease the adsorption energy of intermediates at active sites and facilitate the adsorption of intermediates, thus improving the catalytic properties.
Collapse
Affiliation(s)
- Xiaoqiang Du
- Chemical Engineering and Technology Institute
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Guangyu Ma
- Chemical Engineering and Technology Institute
- North University of China
- Taiyuan 030051
- People's Republic of China
| | | |
Collapse
|
46
|
Lin J, Han Q, Ding Y. Catalysts Based on Earth‐Abundant Metals for Visible Light‐Driven Water Oxidation Reaction. CHEM REC 2018; 18:1531-1547. [DOI: 10.1002/tcr.201800029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/18/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Junqi Lin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
| | - Qing Han
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
47
|
Singh C, Mukhopadhyay S, Das SK. Polyoxometalate-Supported Bis(2,2′-bipyridine)mono(aqua)nickel(II) Coordination Complex: an Efficient Electrocatalyst for Water Oxidation. Inorg Chem 2018; 57:6479-6490. [DOI: 10.1021/acs.inorgchem.8b00541] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chandani Singh
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | | | - Samar K. Das
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| |
Collapse
|
48
|
Du X, Zhang X, Yang Z, Gong Y. Water Oxidation Catalysis Beginning with CuCo2
S4
: Investigation of the True Electrochemically Driven Catalyst. Chem Asian J 2018; 13:266-270. [DOI: 10.1002/asia.201701684] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/02/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoqiang Du
- School of Chemical Engineering and Technology; North University of China; Taiyuan 030051 P.R. China
| | - Xiaoshuang Zhang
- School of Chemical Engineering and Technology; North University of China; Taiyuan 030051 P.R. China
| | - Zhi Yang
- School of Chemical Engineering and Technology; North University of China; Taiyuan 030051 P.R. China
| | - Yaqiong Gong
- School of Chemical Engineering and Technology; North University of China; Taiyuan 030051 P.R. China
| |
Collapse
|
49
|
Du X, Wang Q, Zhang X. Controllable synthesis of NiO/Ni3S2 hybrid arrays as efficient electrocatalysts for water splitting. NEW J CHEM 2018. [DOI: 10.1039/c8nj04446e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiO/Ni3S2 affords a current density of 10 mA cm−2 in 1.0 M KOH at a cell voltage of 1.59 V, i.e., comparable to the commercial 20 wt% IrO2/C–40 wt% Pt/C couple (1.55 V at 10 mA cm−2).
Collapse
Affiliation(s)
- Xiaoqiang Du
- Chemical Engineering and Technology Institute, North University of China
- Taiyuan 030051
- People's Republic of China
| | - Qibin Wang
- Chemical Engineering and Technology Institute, North University of China
- Taiyuan 030051
- People's Republic of China
| | - Xiaoshuang Zhang
- School of Science
- North University of China
- Taiyuan 030051
- People's Republic of China
| |
Collapse
|
50
|
Shen J, Wang M, He T, Jiang J, Hu M. Influence of the backbone of N5-pentadentate ligands on the catalytic performance of Ni(ii) complexes for electrochemical water oxidation in neutral aqueous solutions. Chem Commun (Camb) 2018; 54:9019-9022. [DOI: 10.1039/c8cc04302g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A positive influence of the rigid backbone of N5-chelating ligands was demonstrated on the activity of nickel catalysts for electrochemical water oxidation.
Collapse
Affiliation(s)
- Junyu Shen
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Tianhao He
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Jian Jiang
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Maowei Hu
- State Key Laboratory of Fine Chemicals, Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|