1
|
A new ultrasound-assisted liquid-liquid microextraction method utilizing a switchable hydrophilicity solvent for spectrophotometric determination of nitrite in food samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
2
|
Dou Y, Li Z, Su J, Song S. A Portable Biosensor Based on Au Nanoflower Interface Combined with Electrochemical Immunochromatography for POC Detection of Prostate-Specific Antigen. BIOSENSORS 2022; 12:bios12050259. [PMID: 35624559 PMCID: PMC9138250 DOI: 10.3390/bios12050259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 05/23/2023]
Abstract
Serum prostate-specific antigen (PSA) is a widely used for the detection of prostate cancer and is considered the most reliable biomarker. However, the currently reported detection methods cannot achieve rapid monitoring. Here, we report a novel electrochemical immunochromatography (EIC) system for clinically accurate PSA detection. First, we constructed a carbon interface modified with gold nanoflowers (Au NFs) based on screen-printed carbon electrodes (SPCE), which acted as nanostructures with larger specific surface area that increased the number of PSA capture antibodies and can further improve detection signal-to-noise (S/N) ratio. Then, we fabricated detection chips by combining the SPCE/Au NFs with EIC. Under optimized conditions, the proposed biosensor exhibits high accuracy, taking only 15 minutes to complete detection. By measuring the levels of PSA in clinical blood samples, the biosensor can successfully discriminate clinically diagnosed prostate cancer patients from healthy controls.
Collapse
Affiliation(s)
- Yanzhi Dou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Y.D.); (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Y.D.); (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Shiping Song
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Y.D.); (Z.L.)
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Correspondence:
| |
Collapse
|
3
|
Chen J, Gao Z, Yang R, Jiang H, Bai L, Shao A, Wu H. New Methylene Blue Covalently Functionalized Graphene Oxide Nanocomposite as Interfacial Material for the Electroanalysis of Hydrogen Peroxide. Front Chem 2021; 9:788804. [PMID: 34926408 PMCID: PMC8677660 DOI: 10.3389/fchem.2021.788804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
New methylene blue (NMB), a phenothiazine dye, was covalently bonded to graphene oxide (GO) using glutaraldehyde as a crosslinking agent, which was characterized by spectroscopic techniques and electrochemistry. The obtained GO-NMB nanocomposite was used as interface material to construct a novel electrochemical sensor for the determination of hydrogen peroxide (H2O2). The electrochemical sensor based on GO-NMB nanocomposite exhibited excellent electrocatalytic activity for the reduction of hydrogen peroxide (H2O2), which was also enhanced by GO within the GO-NMB nanocomposite. With the optimized experimental conditions, the developed sensor showed high sensitivity (79.4 μA mM-1 cm-2) for electrocatalytic determination of H2O2 at the applied potential of -0.50 V in the concentration range of 0.000333 to 2.28 mΜ. The low limit of detection (1.35 μM), good reproducibility, and high stability of the sensor suggests that the electrochemical sensor based on the GO-NMB nanocomposite possesses obvious advantages, which paves a new avenue to functionalize GO for obtaining electrode interface materials.
Collapse
Affiliation(s)
- Jifang Chen
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Ziqing Gao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Ruonan Yang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Huiling Jiang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Lin Bai
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Ailong Shao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Hai Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China.,Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang, China
| |
Collapse
|
4
|
Meskher H, Achi F, Zouaoui A, Ha S, Peacock M, Belkhalfa H. Simultaneous and Selective Electrochemical Determination of Catechol and Hydroquinone on A Nickel Oxide (NiO) Reduced Graphene Oxide (rGO) Doped Multiwalled Carbon Nanotube (fMWCNT) Modified Platinum Electrode. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2008951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hicham Meskher
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Fethi Achi
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Ahmed Zouaoui
- Growth and Characterization of New Semiconductors Laboratory (LCCNS), Ferhat Abbas University, Setif, Algeria
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | | | - Hakim Belkhalfa
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Bou-Ismail, Alegria
| |
Collapse
|
5
|
Wang S, Shen Z, Wang Q, Wang HY. Simultaneous realization of holey in-plane defects and expanded interlayers in N-containing nanocarbons from a non-covalent-bonded organic framework for efficient oxygen reduction reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
|
7
|
Rajaji U, Manavalan S, Chen SM, Chinnapaiyan S, Chen TW, Jothi Ramalingam R. Facile synthesis and characterization of erbium oxide (Er 2O 3) nanospheres embellished on reduced graphene oxide nanomatrix for trace-level detection of a hazardous pollutant causing Methemoglobinaemia. ULTRASONICS SONOCHEMISTRY 2019; 56:422-429. [PMID: 31101280 DOI: 10.1016/j.ultsonch.2019.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The nanomaterials have received enormous attention in the catalysis applications. Particularly, we have focused on the fabrication of nanocomposite for an electrochemical sensor with improved electrocatalytic performance. Herein, a rapid and sensitive electrochemical detection of nitrite is essential for assessing the risks facing ecosystems in environment. We report a simple and robust ultrasonic-assisted synthetical route via prepared Er2O3 nanoparticles decorated reduced graphene oxide nanocomposite (Er2O3 NPs@RGO) modified electrode for nitrite detection. The composition and morphological formation were characterized by XRD, XPS, FESEM, and HRTEM. The amperometric (i-t) and cyclic voltammetry were exhibits tremendous electrocatalytic capability and superior performance toward nitrite oxidation. A sensitive and reproducible amperometric nitrite sensor was fabricated which able to detect trace concentration as 3.69 nM and excellent sensitivity (24.17 µA µM-1 cm-2). The method worked well even in cured meat and water samples and the results has indicates the reliability of the method in real-time analysis.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Sathishkumar Chinnapaiyan
- International Master Program in Mechanical and Automation Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Yue X, Luo X, Zhou Z, Wu Y, Bai Y. pH-regulated synthesis of CuOx/ERGO nanohybrids with tunable electrocatalytic oxidation activity towards nitrite sensing. NEW J CHEM 2019. [DOI: 10.1039/c9nj00474b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CuOx/ERGO nanohybrids with diverse morphologies prepared by pH-regulated synthesis display tunable electrocatalytic ability towards nitrite sensing.
Collapse
Affiliation(s)
- Xiaoyue Yue
- College of Food and Biological Engineering, Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control
- Zhengzhou 450001
| | - Xiaoyu Luo
- College of Food and Biological Engineering, Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Zijun Zhou
- College of Food and Biological Engineering, Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Yongmei Wu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control
- Zhengzhou 450001
| | - Yanhong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control
- Zhengzhou 450001
| |
Collapse
|
10
|
Wang Y, Cao W, Yin C, Zhuang Q, Ni Y. Nonenzymatic Amperometric Sensor for Nitrite Detection Based on a Nanocomposite Consisting of Nickel Hydroxide and Reduced Graphene Oxide. ELECTROANAL 2018. [DOI: 10.1002/elan.201800627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yong Wang
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| | - Wei Cao
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| | - Chang Yin
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| | - Qianfen Zhuang
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| | - Yongnian Ni
- College of ChemistryNanchang University Nanchang 330031, Jiangxi China
| |
Collapse
|
11
|
Nayebi R, Tarigh GD, Shemirani F. Electrostatically in situ binding of zwitterionic glycine on the surface of MGO for determination of nitrite in various real samples. Food Chem 2018; 276:255-261. [PMID: 30409592 DOI: 10.1016/j.foodchem.2018.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/09/2018] [Accepted: 10/08/2018] [Indexed: 01/28/2023]
Abstract
Zwitterionic dispersive magnetic solid phase extraction (ZI-DMSPE) was developed through in situ binding of glycine on the magnetic graphene oxide, electrostatically. This highly selective sorbent was applied for the determination and preconcentration of trace levels of nitrite in soil, sausage, water samples (tap, mineral, and rain), and vegetables (potato, onion, spinach, radish, and lettuce) prior to its determination by UV-Vis spectrophotometry. The major advantage of the method is the analyte adsorption in both acidic and basic media. The sorbent was characterized by SEM, XRD, EDS, and FT-IR. Several parameters affecting ZI-DMSPE were optimized. Under the optimal conditions, LOD and RSD were obtained 17 ng L-1 and 1.3% respectively. Preconcentration factor and sorption capacity of the proposed method were 666 and 238 mg g-1 respectively. Accuracy was assessed by comparing results with those obtained by direct determination using ion chromatography and spiked real samples.
Collapse
Affiliation(s)
- Reyhaneh Nayebi
- Department of Analytical Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Farzaneh Shemirani
- Department of Analytical Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| |
Collapse
|