• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4785878)   Today's Articles (80)
For: Yue Z, Yao S, Li Y, Zhu W, Zhang W, Wang R, Wang J, Huang L, Zhao D, Wang J. Surface engineering of hierarchical Ni(OH)2 nanosheet@nanowire configuration toward superior urea electrolysis. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Number Cited by Other Article(s)
1
Huang Y, Xu H, Wang Y, Xing Z, Fang R, Lai H, Qian M, Dong M, Carraro M, Skrydstrup T, Daasbjerg K, Xin Z. Hierarchical Superhydrophilic/Superaerophobic Ni3S2/VS2 Nanorod-Based Bifunctional Electrocatalyst Supported on Nickel Foam for Overall Urea Electrolysis. Inorg Chem 2024;63:19002-19010. [PMID: 39323084 DOI: 10.1021/acs.inorgchem.4c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
2
Zeng Y, Xiang S, Lu S, Qi X. Structural Design of Nickel Hydroxide for Efficient Urea Electrooxidation. MATERIALS (BASEL, SWITZERLAND) 2024;17:2617. [PMID: 38893881 PMCID: PMC11173756 DOI: 10.3390/ma17112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
3
Zhang Y, Wu P, Qiao N, Yu Z, Ma L. Surface Structure Engineering of Two‐Dimensional Ni(OH) 2 with Enhanced Urea Oxidation Performance. ChemistrySelect 2023. [DOI: 10.1002/slct.202204949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
4
Zhang Q, Cui C, Wang Z, Deng F, Qiu S, Zhu Y, Jing B. Mott Schottky CoSx-MoOx@NF heterojunctions electrode for H2 production and urea-rich wastewater purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;858:160170. [PMID: 36379335 DOI: 10.1016/j.scitotenv.2022.160170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
5
Abdelrahim AM, Abd El-Moghny MG, El-Shakre ME, El-Deab MS. Double surface modification of graphite felt using a single facile step for electrolytic hydrogen production assisted by urea. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
6
Carboxyferrocene modulated Ni/Co bimetallic metal-organic framework for highly efficient electrocatalysis of urea oxidation reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
7
Wei M, Zhang D, Deng J, Xiao X, Wang L, Wang X, Song M, Wang S, Zheng X, Liu X. Cu-Doping Effect on the Electrocatalytic Properties of Self-Supported Cu-Doped Ni3S2 Nanosheets for Hydrogen Production via Efficient Urea Oxidation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
8
Flower-like manganese oxide with intercalated nickel ions (Ni3+) as a catalytic electrode material for urea oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
9
Advanced Nickel-Based Catalysts for Urea Oxidation Reaction: Challenges and Developments. Catalysts 2022. [DOI: 10.3390/catal12030337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]  Open
10
Surface gradient diffusion S doping of CuCo2O4 microflowers by an in situ topotactic engineering strategy for CO2 photoreduction. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]  Open
11
Chen Y, Wu X, Liu Q, He M, Bai H. Ni-Foam Structured Ni-Phyllosilicate Ensemble as an Efficient Monolithic Catalyst for CO2 Methanation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03850-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
12
Li J, Li J, Gong M, Peng C, Wang H, Yang X. Catalyst Design and Progresses for Urea Oxidation Electrolysis in Alkaline Media. Top Catal 2021. [DOI: 10.1007/s11244-021-01453-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
13
POM derived UOR and HER bifunctional NiS/MoS2 composite for overall water splitting. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
14
Chen YT, Chen PY, Ju SP. Preparation of Ni nanotube-modified electrodes via galvanic displacement on sacrificial Zn templates: Solvent effects and attempts for non-enzymatic electrochemical detection of urea. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
15
Synthesis of NiHPO4–Ni(OH)2 nanowire-assembled bouquets for electrocatalytic oxidation of methanol and urea. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01463-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
16
Zhu B, Liang Z, Zou R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020;16:e1906133. [PMID: 31913584 DOI: 10.1002/smll.201906133] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Indexed: 06/10/2023]
17
Sun Y, Wang S, Ning J, Zhang Z, Zhong Y, Hu Y. A one-pot "shielding-to-etching" strategy to synthesize amorphous MoS2 modified CoS/Co0.85Se heterostructured nanotube arrays for boosted energy-saving H2 generation. NANOSCALE 2020;12:991-1001. [PMID: 31840724 DOI: 10.1039/c9nr08812a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
18
Sun X, Ding R. Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02618e] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
19
Chen YT, Li CH, Chen PY. Galvanic displacement on electrodeposited tangled Zn nanowire sacrificial template for preparing porous and hollow Ni electrodes in ionic liquid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Chen Y, Sun P, Xing W. Cobalt nitride nanoflakes supported on Ni foam as a high-performance bifunctional catalyst for hydrogen production via urea electrolysis. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1678-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
21
Yang L, Liu Y, Wang L, Zhao Z, Xing C, Shi S, Yuan M, Ge Z, Cai Z. Co5.47N/rGO@NF as a High-Performance Bifunctional Catalyst for Urea-Assisted Hydrogen Evolution. Catal Letters 2019. [DOI: 10.1007/s10562-019-02854-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
Wu MS, Sie YJ, Yang SB. Hollow mesoporous nickel dendrites grown on porous nickel foam for electrochemical oxidation of urea. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
23
Hu S, Feng C, Wang S, Liu J, Wu H, Zhang L, Zhang J. Ni3N/NF as Bifunctional Catalysts for Both Hydrogen Generation and Urea Decomposition. ACS APPLIED MATERIALS & INTERFACES 2019;11:13168-13175. [PMID: 30900444 DOI: 10.1021/acsami.8b19052] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
24
Facile preparation of Ni nanowire embedded nitrogen and sulfur dual-doped carbon nanofibers and its superior catalytic activity toward urea oxidation. J Colloid Interface Sci 2018;529:337-344. [DOI: 10.1016/j.jcis.2018.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022]
25
Yue Z, Zhu W, Li Y, Wei Z, Hu N, Suo Y, Wang J. Surface Engineering of a Nickel Oxide–Nickel Hybrid Nanoarray as a Versatile Catalyst for Both Superior Water and Urea Oxidation. Inorg Chem 2018;57:4693-4698. [DOI: 10.1021/acs.inorgchem.8b00411] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
26
Sun S, Diao P, Feng C, Ungureanu EM, Tang Y, Hu B, Hu Q. Nickel-foam-supported β-Ni(OH)2 as a green anodic catalyst for energy efficient electrooxidative degradation of azo-dye wastewater. RSC Adv 2018;8:19776-19785. [PMID: 35540961 PMCID: PMC9080785 DOI: 10.1039/c8ra03039a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/11/2018] [Indexed: 11/21/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA