1
|
Yu Z, Xiang Y, Han X, Guang Y, Li F. Study on the photo/electrochemical bi-functional properties of a coupling interface of Ru[dcbpy] 32+-AMT/Au by SECM imaging-based joint analytical method. Talanta 2024; 277:126423. [PMID: 38897005 DOI: 10.1016/j.talanta.2024.126423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/27/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
A photo/electrochemical coupling interface of Ru[dcbpy]32+-AMT/Au (AMT; 5-Amino-1,3,4-thiadiazole-2-thiol) was fabricated using a dehydration condensation sulfhydrating method. For the interface functional properties, a combined dual-signal recording (CDSR) method was applied to characterize the response characteristics, and a scanning electrochemical microscopy-electrochemiluminescence (SECM-ECL) imaging was developed to assess the interface distribution uniformity. The interface biosensing compatibility was validated by constructing a simple DNA sensor. The research results show that the interaction between the two functional parameters follows a synergistic effect mechanism in the coupling conditions and an interference effect mechanism in the detection condition. Under optimized conditions, the saturation dual-signal response values are 156.0 and 86.8 μA, respectively. The statistics and imaging comparison analysis validate good interface distribution uniformity and stability performance. The DNA sensor's dual-signal detection limits to the signal probe (SP) are ∼30 fM and 0.3 pM with linear ranges of 100.0 fM ∼ 1.0 nM and 1.0 pM ∼ 10.0 nM, respectively. The fabricated interface exhibits an effective bi-functional response performance compatible with biosensing. The proposed imaging method has a high technical fit for studying photo/electrochemical coupling interfaces and can also provide a reference for other similar coupling interface analyses.
Collapse
Affiliation(s)
- Zhigang Yu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Yangkejia Xiang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Xianda Han
- School of Material Industry, Shanxi College of Technology, Shuozhou, Shanxi, 036000, China.
| | - Yi Guang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Fengqin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| |
Collapse
|
2
|
Suvira M, Ahuja A, Lovre P, Singh M, Draher GW, Zhang B. Imaging Single H 2 Nanobubbles Using Off-Axis Dark-Field Microscopy. Anal Chem 2023; 95:15893-15899. [PMID: 37851536 DOI: 10.1021/acs.analchem.3c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A robust and detailed physicochemical description of electrochemically generated surface nanobubbles and their effects on electrochemical systems remains at large. Herein, we report the development and utilization of an off-axis, dark-field microscopy imaging tool for probing the dynamic process of generating single H2 nanobubbles at the surface of a carbon nanoelectrode. A change in the direction of the incident light is made to significantly reduce the intensity of the background light, which enables us to image both the nanoelectrode and nanobubble on the electrode surface or the metal nanoparticles in the vicinity of the electrode. The correlated electrochemical and optical response provides novel insights regarding bubble nucleation and dissolution on a nanoelectrode previously unattainable solely from its current-voltage response.
Collapse
Affiliation(s)
- Milomir Suvira
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Ananya Ahuja
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Pascal Lovre
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Mantak Singh
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Gracious Wyatt Draher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
3
|
Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021; 23:19120-19129. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.
Collapse
Affiliation(s)
- Shanlin Pan
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Xiao Li
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Jeetika Yadav
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
4
|
Yang M, Batchelor-McAuley C, Barton S, Rickaby REM, Bouman HA, Compton RG. Opto-Electrochemical Dissolution Reveals Coccolith Calcium Carbonate Content. Angew Chem Int Ed Engl 2021; 60:20999-21006. [PMID: 34288323 PMCID: PMC8518593 DOI: 10.1002/anie.202108435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Indexed: 12/01/2022]
Abstract
Coccoliths are plates of biogenic calcium carbonate secreted by calcifying marine phytoplankton; annually these phytoplankton are responsible for exporting >1 billion tonnes (1015 g) of calcite to the deep ocean. Rapid and reliable methods for assessing the degree of calcification are technically challenging because the coccoliths are micron sized and contain picograms (pg) of calcite. Here we pioneer an opto‐eletrochemical acid titration of individual coccoliths which allows 3D reconstruction of each individual coccolith via in situ optical imaging enabling direct inference of the coccolith mass. Coccolith mass ranging from 2 to 400 pg are reported herein, evidencing both inter‐ and intra‐species variation over four different species. We foresee this scientific breakthrough, which is independent of knowledge regarding the species and calibration‐free, will allow continuous monitoring and reporting of the degree of coccolith calcification in the changing marine environment.
Collapse
Affiliation(s)
- Minjun Yang
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Christopher Batchelor-McAuley
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Samuel Barton
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Heather A Bouman
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Richard G Compton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
5
|
Yang M, Batchelor‐McAuley C, Barton S, Rickaby REM, Bouman HA, Compton RG. Opto‐Electrochemical Dissolution Reveals Coccolith Calcium Carbonate Content. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Minjun Yang
- Physical and Theoretical Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford UK
| | - Christopher Batchelor‐McAuley
- Physical and Theoretical Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford UK
| | - Samuel Barton
- Department of Earth Sciences University of Oxford South Parks Road Oxford UK
| | | | - Heather A. Bouman
- Department of Earth Sciences University of Oxford South Parks Road Oxford UK
| | - Richard G. Compton
- Physical and Theoretical Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford UK
| |
Collapse
|
6
|
Yang M, Chen X, Wang Z, Zhu Y, Pan S, Chen K, Wang Y, Zheng J. Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1895. [PMID: 34443724 PMCID: PMC8398172 DOI: 10.3390/nano11081895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Metal nanostructured materials, with many excellent and unique physical and mechanical properties compared to macroscopic bulk materials, have been widely used in the fields of electronics, bioimaging, sensing, photonics, biomimetic biology, information, and energy storage. It is worthy of noting that most of these applications require the use of nanostructured metals with specific controlled properties, which are significantly dependent on a series of physical parameters of its characteristic size, geometry, composition, and structure. Therefore, research on low-cost preparation of metal nanostructures and controlling of their characteristic sizes and geometric shapes are the keys to their development in different application fields. The preparation methods, physical and chemical properties, and application progress of metallic nanostructures are reviewed, and the methods for characterizing metal nanostructures are summarized. Finally, the future development of metallic nanostructure materials is explored.
Collapse
Affiliation(s)
- Ming Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Xiaohua Chen
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Zidong Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Yuzhi Zhu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Shiwei Pan
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Kaixuan Chen
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Yanlin Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Jiaqi Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| |
Collapse
|
7
|
Chen S, Higaki T, Ma H, Zhu M, Jin R, Wang G. Inhomogeneous Quantized Single-Electron Charging and Electrochemical-Optical Insights on Transition-Sized Atomically Precise Gold Nanoclusters. ACS NANO 2020; 14:16781-16790. [PMID: 33196176 DOI: 10.1021/acsnano.0c04914] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small differences in electronic structures, such as an emerging energy band gaps or the splitting of degenerated orbitals, are very challenging to resolve but important for nanomaterials properties. A signature electrochemical property called quantized double layer charging, i.e., "continuous" one-electron transfers (1e, ETs), in atomically precise Au133(TBBT)52, Au144(BM)60, and Au279(TBBT)84 is analyzed to reveal the nonmetallic to metallic transitions (whereas TBBT is 4-tert-butylbenzenethiol and BM is benzyl mercaptan; abbreviated as Au133, Au144, and Au279). Subhundred milli-eV energy differences are resolved among the "often-approximated uniform" peak spacings from multipairs of reversible redox peaks in voltammetric analysis, with single ETs as internal standards for calibration and under temperature variations. Cyclic and differential pulse voltammetry experiments reveal a 0.15 eV energy gap for Au133 and a 0.17 eV gap for Au144 at 298 K. Au279 is confirmed metallic, displaying a "bulk-continuum" charging response without an energy gap. The energy gaps and double layer capacitances of Au133 and Au144 increase as the temperature decreases. The temperature dependences of charging energies and HOMO-LUMO gaps of Au133 and Au144 are attributed to the counterion permeation and the steric hindrance of ligand, as well as their molecular compositions. With the subtle energy differences resolved, spectroelectrochemistry features of Au133 and Au144 are compared with ultrafast spectroscopy to demonstrate a generalizable analysis approach to correlate steady-state and transient energy diagram for the energy-in processes. Electrochemiluminescence (ECL), one of the energy-out processes after the charge transfer reactions, is reported for the three samples. The ECL intensity of Au279 is negligible, whereas the ECLs of Au133 and Au144 are relatively stronger and observable (but orders of magnitudes weaker than our recently reported bimetallic Au12Ag13). Results from these atomically precise nanoclusters also demonstrate that the combined voltammetric and spectroscopic analyses, together with temperature variations, are powerful tools to reveal subtle differences and gain insights otherwise inaccessible in other nanomaterials.
Collapse
Affiliation(s)
- Shuang Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| | - Tatsuya Higaki
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hedi Ma
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
8
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Optical monitoring of the electrochemical nucleation and growth of silver nanoparticles on electrode: From single to ensemble nanoparticles inspection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Wei W, Yuan T, Jiang W, Gao J, Chen HY, Wang W. Accessing the Electrochemical Activity of Single Nanoparticles by Eliminating the Heterogeneous Electrical Contacts. J Am Chem Soc 2020; 142:14307-14313. [PMID: 32787250 DOI: 10.1021/jacs.0c06171] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While single nanoparticle electrochemistry holds great promise for establishing the structure-activity relationship (SAR) of electroactive nanomaterials, as it removes the heterogeneity among individuals, successful SAR studies remain rare. When one nanoparticle is seen to exhibit better performance than the others, it is often simply attributed to better activity of the particular individual. By taking the ion insertion reaction of Prussian blue nanoparticles as an example, here we show that the electrical contact between nanoparticles and electrode, a previously overlooked factor, was greatly distinct from one nanoparticle to another and significantly contributed to the apparent heterogeneity in the reactivity and cyclability. An individual nanoparticle with intrinsically perfect structure (size, facet, crystallinity, and so on) could be completely inactive, simply due to poor electrical contacts, which blurred the SAR and likely caused failures. We further proposed a sputter-coating method to enhance the electrical contacts by depositing an ultrathin platinum layer onto the sample. Such an approach was routinely adopted in scanning electron microscopy to improve the electron mobility between nanoparticles and substrate. Elimination of heterogeneous contacts ensured that the electrochemical activity of single nanoparticles can be accessed and further correlated with their structural features, thus paving the way for single nanoparticle electrochemistry to deliver on its promises in SAR.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Wang H, Zhao W, Xu CH, Chen HY, Xu JJ. Electrochemical synthesis of Au@semiconductor core-shell nanocrystals guided by single particle plasmonic imaging. Chem Sci 2019; 10:9308-9314. [PMID: 32110293 PMCID: PMC7006628 DOI: 10.1039/c9sc02804h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
Plasmonic photocatalysts have opened up a new direction in utilization of visible light and promoting photocatalytic efficiency. An electrochemical deposition method is reported to synthesise metal@semiconductor (M@SC) core-shell nanocrystals. Due to the strong affinity of Au atoms to S2- and Se2- reduced at negative potential, CdS, CdSe and ZnS were selectively deposited on the surface of the Au core to form a uniform shell with a clear metal/semiconductor interface, which conquered the barrier caused by the large lattice mismatch between the two components. Plasmonic effects increased the photocatalytic performance, as well as provided a chance to in situ monitor the surface nucleation and growth. The structure formation process could be observed under dark-field microscopy (DFM) in real-time and precisely controlled via the scattering color, intensity and wavelength. The proof-of-concept strategy combines the electrochemical deposition and plasmonic imaging, which provides a universal approach in controllable synthesis of core-shell heterostructures, and leads to the improvement of plasmonic photocatalysts.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| |
Collapse
|