1
|
Gong X, Qin S, Li T, Wei X, Liu S, Liu Y, Ma X, Li Q, Xia C. Novel Insight into the Synergistic Mechanism for Pd and Rh Promoting the Hydro-Defluorination of 4-Fluorophenol over Bimetallic Rh-Pd/C Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43474-43488. [PMID: 39113533 DOI: 10.1021/acsami.4c06180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study explores the synergistic effect between the Rh and Pd of bimetallic Rh-Pd/C catalysts for the catalytic hydro-defluorination (HDF) of 4-fluorophenol (4-FP). It was found that 4-FP could not be efficiently hydro-defluorinated over 6% Pd/C and 6% Rh/C due to the inherent properties of Pd and Rh species in the dissociation of H2 and the activation of C-F bonds. Compared with 6% Pd/C and 6% Rh/C, bimetallic Rh-Pd/C catalysts, especially 1% Rh-5% Pd/C, exhibited much higher catalytic activity in the HDF of 4-FP, suggesting that the synergistic effect between the Rh and Pd of the catalyst was much more positive. Catalyst characterizations (BET, XRD, TEM, and XPS) were introduced to clarify the mechanism for the synergistic effect between the Rh and Pd of the catalyst in the HDF reaction and revealed that it was mainly attributed to the bifunctional mechanism: Pd species were favorable for the dissociation of H2, and Rh species were beneficial to the activation of C-F bonds in the HDF reaction. Meanwhile, the interaction between Rh and Pd species enabled Rh and Pd to exhibit a more positive synergistic effect, which promoted the migration of atomic H* from Pd to Rh species and thus enhanced the HDF of 4-FP. Furthermore, 1% Rh-5% Pd/C prepared using 20-40 equiv NaBH4 exhibited the best performance in the catalytic HDF of 4-FP. Catalysis characterizations suggested that appropriate Rh3+/Rh0 and Pd2+/Pd0 ratios were beneficial to the dissociation of H2 and the activation of C-F bonds, which caused the more positive synergistic effect between the Rh and Pd of Rh-Pd/C in the HDF reaction. This work offers a valuable strategy for enhancing the performance of catalytic HDF catalysts via promoting synergistic effects.
Collapse
Affiliation(s)
- Xutao Gong
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Shuting Qin
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Tong Li
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Xinghua Wei
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Sujing Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Ying Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Xuanxuan Ma
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chuanhai Xia
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|
2
|
An S, Ji H, Park J, Choi Y, Choe JK. Influence of chemical structures on reduction rates and defluorination of fluoroarenes during catalytic reduction using a rhodium-based catalyst. CHEMOSPHERE 2024; 362:142755. [PMID: 38969226 DOI: 10.1016/j.chemosphere.2024.142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Continuous growth in fluoroarene production has led to environmental pollution and health concerns owing to their persistence, which is attributed to the stable C-F bond in their structures. Herein, we investigated fluoroarene decomposition via hydrodefluorination using a rhodium-based catalyst, focusing on the effects of the chemical structure and functional group on the defluorination yield. Most compounds, except (pentafluoroethyl)benzene, exhibited full or partial reduction with pseudo-first-order rate constants in the range of 0.002-0.396 min-1 and defluorination yields of 0%-100%. Fluoroarenes with hydroxyl, methyl, and carboxylate groups were selected to elucidate how hydrocarbon and oxygen-containing functional groups influence the reaction rate and defluorination. Inhibition of the reaction rate and defluorination yield based on functional groups increased in the order of hydroxyl < methyl < carboxylate, which was identical to the order of the electron-withdrawing effect. Fluoroarenes with polyfluoro groups were also assessed; polyfluoro groups demonstrated a different influence on catalyst activity than non-fluorine functional groups because of fluorine atoms in the substituents undergoing defluorination. The reaction kinetics of (difluoromethyl)fluorobenzenes and their intermediates suggested that hydrogenation and defluorination occurred during degradation. Finally, the effects of the type and position of functional groups on the reaction rate and defluorination yield were investigated via multivariable linear regression analysis. Notably, the electron-withdrawing nature of functional groups appeared to have a greater impact on the defluorination yield of fluoroarenes than the calculated C-F bond dissociation energy.
Collapse
Affiliation(s)
- Seonyoung An
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hojoong Ji
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Yongju Choi
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Abstract
Fluorinated organic compounds are common among pharmaceuticals, agrochemicals and materials. The significant strength of the C-F bond results in chemical inertness that, depending on the context, is beneficial, problematic or simply a formidable synthetic challenge. Electrosynthesis is a rapidly expanding methodology that can enable new reactivity and selectivity for cleavage and formation of chemical bonds. Here, a comprehensive overview of synthetically relevant electrochemically driven protocols for C-F bond activation and functionalization is presented, including photoelectrochemical strategies.
Collapse
Affiliation(s)
- Johannes L Röckl
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | | | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
4
|
Aihara K, Kato K, Uchiyama T, Yasuda S, Yokoi T, Yamakata A, Uchimoto Y, Maeda K. Improvement of Visible‐Light H
2
Evolution Activity of Pb
2
Ti
2
O
5.4
F
1.2
Photocatalyst by Coloading of Rh and Pd Cocatalysts. Chemistry 2022; 28:e202200875. [PMID: 35622449 PMCID: PMC9401856 DOI: 10.1002/chem.202200875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/23/2022]
Abstract
Pb2Ti2O5.4F1.2 modified with various metal cocatalysts was studied as a photocatalyst for visible‐light H2 evolution. Although unmodified Pb2Ti2O5.4F1.2 showed negligible activity, modification of its surface with Rh led to the best observed promotional effect among the Pb2Ti2O5.4F1.2 samples modified with a single metal cocatalyst. The H2 evolution activity was further enhanced by coloading with Pd; the Rh−Pd/Pb2Ti2O5.4F1.2 photocatalyst showed 3.2 times greater activity than the previously reported Pt/Pb2Ti2O5.4F1.2. X‐ray absorption fine‐structure spectroscopy, photoelectrochemical, and transient absorption spectroscopy measurements indicated that the coloaded Rh and Pd species, which were partially alloyed on the Pb2Ti2O5.4F1.2 surface, improved the electron‐capturing ability, thereby explaining the high activity of the coloaded Rh−Pd/Pb2Ti2O5.4F1.2 catalyst toward H2 evolution.
Collapse
Affiliation(s)
- Kenta Aihara
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama Meguro-ku Tokyo 152-8550 Japan
| | - Kosaku Kato
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
- Present address: Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies Kyoto University Yoshidanihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Shuhei Yasuda
- Nanospace Catalysis Unit Institute of Innovative Research Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Toshiyuki Yokoi
- Nanospace Catalysis Unit Institute of Innovative Research Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Akira Yamakata
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
- Present address: Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies Kyoto University Yoshidanihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Kazuhiko Maeda
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
5
|
Yan G. Photochemical and Electrochemical Strategies for Hydrodefluorination of Fluorinated Organic Compounds. Chemistry 2022; 28:e202200231. [PMID: 35301767 DOI: 10.1002/chem.202200231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Hydrodefluorination (HDF) is a very important fundamental transformation for conversion of the C-F bond into the C-H bond in organic synthesis. In the past decade, much progress has been achieved with HDF through the utility of low-valent metals, transition-metal complexes and main-group Lewis acids. Recently, novel methods have been introduced for this purpose through photo- and electrochemical pathways, which are of great significance, due to their considerable environmental and economical advantages. This Review highlights the HDF of fluorinated organic compounds (FOCs) through photo- and electrochemical strategies, along with mechanistic insights.
Collapse
Affiliation(s)
- Guobing Yan
- Department of Chemistry, College of Jiyang, Zhejiang A&F University, Zhuji, Zhejiang, 311800, P. R. China
| |
Collapse
|
6
|
Zhu J, Chen Y, Gu Y, Ma H, Hu M, Gao X, Liu T. Feasibility study on the electrochemical reductive decomposition of PFOA by a Rh/Ni cathode. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126953. [PMID: 34449337 DOI: 10.1016/j.jhazmat.2021.126953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The discharge of widely used per- and poly-fluorinated compounds (PFCs) leads to their environmental prevalence, bioaccumulation and biotoxicity; and attracts researches focusing on their treatment in wastewater. Electrochemical reductive treatment is a promising alternative due to its milder reaction conditions and easy operation. The feasibility of electrochemical reductive decomposition of PFOA using a Rh/Ni cathode was explored. The Rh/Ni cathode was fabricated by coating Rh3+ on Ni foil through electrodeposition. The Rh coating was primarily elemental and in a Rh(111) crystalline form. PFOA decomposition and defluorination were observed when using the Rh/Ni cathode where DMF was the solvent and the cathode potential was -1.25 V. A hydrodefluorination reaction was considered having occurred. Because possessing d electrons and empty d orbitals, the Rh coating enhanced PFOA adsorption onto the cathode surface and facilitated CF bond activation through Rh···F interactions. Moreover, the Rh(111) crystal helped chemisorb the generated H* and supply it participating in PFOA decomposition. With the continuous interaction of cathode-supplied electrons, CF bond would ultimately dissociate and transform to CH bond by H* substitution. Adding FeCp2* as a supporting electrolyte enhanced PFOA decomposition by working as the shuttle facilitating PFOA migration to the cathode surface.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yurong Gu
- Shenzhen Polytechnic, Shenzhen 518055, PR China.
| | - Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Mingyue Hu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xinlei Gao
- Guangdong Water Co., Ltd, Shenzhen 518021, PR China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| |
Collapse
|
7
|
Yang Y, Wei X, Miao J, Zhang R, Xu H, Liu J, Zhu S. Electrochemical Degradation of 4-Fluorophenol in a Moveable Pd-Polypyrrole Catalyst-Mediated Reactor. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Wang X, Xu P, Yang C, Shen T, Qu J, Wang P, Zhang G. Enhanced 4-FP removal with MnFe 2O 4 catalysts under dielectric barrier discharge plasma: Economical synthesis, catalytic performance and degradation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125602. [PMID: 34030426 DOI: 10.1016/j.jhazmat.2021.125602] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The dielectric barrier discharge plasma (DBDP) process has received extensive attention for the removal of organic contaminants from water. A novel microwave-assisted hydrothermal method was used to easily and rapidly synthesize MnFe2O4 catalysts. Based on the DBDP process, MnFe2O4 can enhance 4-fluorophenol (4-FP) abatement from 44.15% to 58.78% through the catalysis within 18 min. Then, the adjunction of O3 generated by discharge can further boost 4-FP degradation to 94.94%. After the whole optimization process is complete, the associated pseudo-first-order reaction kinetic constant and energy efficiency were enhanced from 0.0327 to 0.1536 min-1 and 2067.13 mg kW h-1 to 4444.75 mg kW h-1, respectively. With the help of the condition, blank and radical capture experiments, the catalytic performance caused by MnFe2O4 and O3 was attributed to the joint action of Fenton-like reactions, photocatalysis (ultraviolet, UV), photoassisted Fenton reactions and O3 catalysis. The overall downward trend of the possible intermediate toxicities indicated that the DBDP/MnFe2O4/O3 process can effectively remove and mineralize 4-FP without the generation of more toxic intermediates. In addition, during the 5 cycles, MnFe2O4 can maintain excellent recovery, efficiency and durability. In summary, the coupling of discharge plasma and MnFe2O4 sheds new light on catalysis for wastewater treatment.
Collapse
Affiliation(s)
- Xiaojing Wang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
9
|
Zhang M, Shi Q, Song X, Wang H, Bian Z. Recent electrochemical methods in electrochemical degradation of halogenated organics: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10457-10486. [PMID: 30798495 DOI: 10.1007/s11356-019-04533-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Halogenated organics are widely used in modern industry, agriculture, and medicine, and their large-scale emissions have led to soil and water pollution. Electrochemical methods are attractive and promising techniques for wastewater treatment and have been developed for degradation of halogenated organic pollutants under mild conditions. Electrochemical techniques are classified according to main reaction pathways: (i) electrochemical reduction, in which cleavage of C-X (X = F, Cl, Br, I) bonds to release halide ions and produce non-halogenated and non-toxic organics and (ii) electrochemical oxidation, in which halogenated organics are degraded by electrogenerated oxidants. The electrode material is crucial to the degradation efficiency of an electrochemical process. Much research has therefore been devoted to developing appropriate electrode materials for practical applications. This paper reviews recent developments in electrode materials for electrochemical degradation of halogenated organics. And at the end of this paper, the characteristics of new combination methods, such as photocatalysis, nanofiltration, and the use of biochemical method, are discussed.
Collapse
Affiliation(s)
- Meng Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Qin Shi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China
| | - Xiaozhe Song
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, Beijing, People's Republic of China.
| |
Collapse
|