1
|
Cirillo C, Iuliano M, Sarno M. ZnFe 2O 4/GQDs Nanoparticles as Peroxidase Mimics for Sensitive and Selective Colorimetric Detection of Glucose in Real Samples. MICROMACHINES 2025; 16:520. [PMID: 40428647 PMCID: PMC12113822 DOI: 10.3390/mi16050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Glucose detection is critical in addressing health and medical issues related to irregular blood levels. Colorimetry, a simple, cost-effective, and visually straightforward method, is often employed. Traditional enzymatic detection methods face drawbacks such as high costs, limited stability, and operational challenges. To overcome these, enzyme mimics or artificial nano-enzymes based on inorganic nanomaterials have garnered attention, but their cost and susceptibility to inactivation limit applications. This study presents a ZnFe2O4/GQDs nanocomposite as an innovative enzyme mimic, addressing key requirements like low cost, high stability, biocompatibility, and wide operational range. Synthesized using a simple and inexpensive method, the composite benefits from the synergistic interaction between ZnFe2O4 nanoparticles and graphene quantum dots (GQDs), resulting in excellent magnetic properties, high surface area, and functional versatility. The material demonstrated remarkable sensitivity with a detection limit of 7.0 μM across a range of 5-500 μM and achieved efficient peroxidase-like activity with Km values of 0.072 and 0.068 mM and Vmax of 4.58 × 10⁻8 and 8.29 × 10⁻8 M/s for TMB and H2O2, respectively. The nanocomposite also exhibited robust recyclability, retaining performance over six reuse cycles.
Collapse
Affiliation(s)
- Claudia Cirillo
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
- Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| | - Mariagrazia Iuliano
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
- Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| | - Maria Sarno
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
- Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| |
Collapse
|
2
|
Hagiwara H, Hayakawa K, Ishitsuka K, Awaya K, Hatakeyama K, Ida S. Cobalt Hydroxide Modification of TiO 2 Nanosheets for Visible-Light-Responsive Photocatalysts. ACS OMEGA 2025; 10:3101-3107. [PMID: 39895714 PMCID: PMC11780558 DOI: 10.1021/acsomega.4c10161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
To make full use of sunlight for water splitting reactions for hydrogen production, a visible-light-driven photocatalyst was developed by modifying TiO2 nanosheets with Co(OH)2. By adding an aqueous Co(NO3)2·6H2O solution to a TiO2 nanosheet suspension, the TiO2 nanosheets aggregated and Co(OH)2 was formed. In the ultraviolet-visible (UV-vis) diffuse reflectance spectrum of the photocatalyst, new absorption bands attributable to Co(OH)2 and the interfacial charge transfer between Co(OH)2 and the TiO2 nanosheets appeared at around 600 and 400 nm, respectively. The photocatalytic activity of Co(OH)2/TiO2 nanosheets was evaluated in terms of the O2 evolution reaction in an aqueous AgNO3 solution, finding that the reaction proceeds under visible light. Furthermore, the investigation of the wavelength dependence of the photocatalytic activity revealed that the photocatalytic reaction on Co(OH)2/TiO2 nanosheets proceeds via Co(OH)2 photocatalysis and interfacial charge transfer between Co(OH)2 and the TiO2 nanosheets under visible light irradiation.
Collapse
Affiliation(s)
- Hidehisa Hagiwara
- Hydrogen
Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Katsuaki Hayakawa
- Hydrogen
Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kazuki Ishitsuka
- Hydrogen
Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Keisuke Awaya
- Faculty
of Advanced Science and Technology, Kumamoto
University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kazuto Hatakeyama
- Institute
of Industrial Nanomaterials (IINa), Kumamoto
University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shintaro Ida
- Institute
of Industrial Nanomaterials (IINa), Kumamoto
University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
3
|
Yang L, Fu Z, Xie J, Ding Z. Portable sensing of hydrogen peroxide using MOF-based nanozymes. Food Res Int 2024; 197:115272. [PMID: 39593350 DOI: 10.1016/j.foodres.2024.115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Hydrogen peroxide (H2O2) is extensively used in water treatment and food preservation for its pathogen-killing efficacy. Excessive H2O2 intake, however, can lead to poisoning with symptoms such as abdominal pain and breathing difficulties. Additionally, small amounts of H2O2 may be generated during food preservation, necessitating careful control to meet safety regulations. Real-time detection of H2O2 is crucial for process safety and compliance. In this study, a Zr-MOF-based colorimetric fluorescent nanozyme sensor (NH2-UiO-67(Zr/Cu)) along with a smartphone-assisted portable device were developed for detecting H2O2. The sensor, NH2-UiO-67(Zr/Cu), combines the stable structural properties of Zr-MOF with ligand-generated fluorescence and exhibits peroxidase-like activity. The sensor demonstrated a detection range of 0-1000 μM, with limits of detection (LOD) of 0.0057 μM for the colorimetric assay and 0.0020 μM for the fluorescence assay. Additionally, we designed and developed a portable, smartphone-assisted device using 3D printing technology. This device offers a detection range of 0-750 μM, with LODs of 0.0093 μM in colorimetric mode and 0.0311 μM in fluorescence mode. The developed colorimetric fluorescent nanozyme sensor and portable device show significant potential for the rapid on-site detection of H2O2, offering a more convenient and reliable approach for quick identification of analytes in practical applications.
Collapse
Affiliation(s)
- LingFeng Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zuyao Fu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Coconstruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Coconstruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
4
|
Cao J, Jiang H, Wu Y, Yu X. Visual detection of H 2O 2 and glucose by HBcAb-HRP fluorescence-enhanced CdTe QDs/CDs ratiometric fluorescence sensing platform. Colloids Surf B Biointerfaces 2024; 235:113774. [PMID: 38309154 DOI: 10.1016/j.colsurfb.2024.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
This study presents the development of a sensitive and simple enhanced ratiometric fluorescence sensing platform in the consist of CdTe quantum dots (QDs), carbon dots (CDs), and hepatitis B core antibody labeled with horseradish peroxidase (HBcAb-HRP) for the visual analysis of H2O2 and glucose. The sulfur atoms in HBcAb-HRP have a strong affinity for Cd(II), which effectively enhances the fluorescence intensity of the CdTe QDs due to the generation of more radiative centers at the CdTe/Cd-SR complex. In the presence of H2O2, the Cd-S bonds are oxidized to form disulfide products and results in linear fluorescence quenching, while CDs maintain stable. Becasue glucose can be converted into H2O2 with the aid of glucose oxidase, this sensing platform can also be used for analyzing glucose. The detection limits for H2O2 and glucose are 2.9 μmol L-1 with RSD of 2.6% and 1.6 μmol L-1 with RSD of 2.4% respectively. In addition, under UV lamp irradiation, the orange-yellow CdTe QDs gradually quench with increasing H2O2 and glucose, while the blue CDs remain unchanged. A color change from orange-yellow to blue enables a visual semi-quantitative determination of H2O2 in commercial contact lens solution and glucose in human serum without any pretreatment. Thus, this CdTe QDs/CDs ratiometric sensing platform has significant potential for the rapid analysis of H2O2 and glucose in actual application.
Collapse
Affiliation(s)
- Jie Cao
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Han Jiang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
5
|
Huanan G, Shiqin D, Qiaoyan W, Qi Z, Hua Y, Dongxu W. Rapid and sensitive smartphone non-enzymatic colorimetric assay for the detection of glucose in food based on peroxidase-like activity of Fe 3O 4@Au nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122970. [PMID: 37331256 DOI: 10.1016/j.saa.2023.122970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
A low-cost and reliable analytical method based on the combination of a newly designed Fe3O4@Au as peroxidase mimetics, supported on smartphone analysis software package was proposed for the determination of glucose content in food samples. The nanocomposite was prepared by self-assembling technique, and the characterization was carried out using transmission electron microscopy (TEM), Fourier transforms infrared, and X-ray diffractometer. Record the color change of the solution with a smartphone camera and optimize the operation parameters and reaction conditions. A smartphone with a free self-developed app was accustomed live the RGB (red-greenblue) values of color intensity within the Fe3O4@Au system and were processed with Image J software before computationally convert them glucose concentrations. At the optimization experiment, reaction temperature of 60 °C, reaction time of 50 min and the amount of addition of Fe3O4@Au 0.0125 g was the optimal combination of detecting glucose smartphone color detection system. Hereon, the accuracy of the proposed method was evaluated by comparison between smartphone colorimetry and UV-vis spectrophotometer, a linear calibration in the range of 0.25 ∼ 15 mmol/L glucose was obtained with minimum detection limit of 1.83 and 2.25 μmol/L, respectively. The proposed method was applied effectively to the detection of glucose in actual samples. The results were in accordance with the conventional UV-vis spectrophotometer method.
Collapse
Affiliation(s)
- Guan Huanan
- School of Gain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212000, People's Republic of China; College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China.
| | - Du Shiqin
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Wu Qiaoyan
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Zhang Qi
- School of Gain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212000, People's Republic of China
| | - Ye Hua
- School of Gain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212000, People's Republic of China
| | - Wang Dongxu
- School of Gain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212000, People's Republic of China
| |
Collapse
|
6
|
Jiang D, Liu T, Chu Z, Wang Y. Advances in nanostructured material-based non-enzymatic electrochemical glucose sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6344-6361. [PMID: 37971394 DOI: 10.1039/d3ay01664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Non-enzymatic electrochemical sensors that use functional materials to directly catalyze glucose have shown great promise in diabetes management, food control, and bioprocess inspection owing to the advantages of high sensitivity, long-term stability, and low cost. Recently, in order to produce enhanced electrochemical behavior, significant efforts have been devoted to the preparation of functional materials with regular nanostructure, as it provides high specific surface area and well-defined strong active sites for electrochemical sensing. However, the structure-performance correlation in this field has not been reviewed thoroughly in the literature. This review aims to present a comprehensive report on advanced zero- to three-dimensional nanostructures based on the geometric feature and to discuss in depth their structural effects on enzyme-free electrochemical detection of glucose. It starts by illustrating the sensing principles of nanostructured materials, followed by a detailed discussion on the structural effects related to the features of each dimension. The structure-performance correlation is explored by comparing the performance derived from diverse dimensional architectures, which is beneficial for the better design of regular nanostructure to achieve efficient enzyme-free sensing of glucose. Finally, future directions of non-enzymatic electrochemical glucose sensors to solve emerging challenges and further improve the sensing performance are also proposed.
Collapse
Affiliation(s)
- Danfeng Jiang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China.
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| | - Zhenyu Chu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| | - Yi Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China.
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, PR China
| |
Collapse
|
7
|
Wang W, Hong M, Wong NK, Deng J, Li Z, Ran Y, Li J, Sun L, Jin L, Guan BO. Surface-wettable nonenzymatic fiber-optic sensor for selective detection of hydrogen peroxide. OPTICS EXPRESS 2022; 30:26975-26987. [PMID: 36236879 DOI: 10.1364/oe.457320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/19/2022] [Indexed: 06/16/2023]
Abstract
A micro-nanostructure-based surface-modified fiber-optic sensor has been developed herein to selectively detect hydrogen peroxide (H2O2). In our design, phenylboronic ester-modified polymers were used as a modified cladding medium that allows chemo-optic transduction. Sensing is mechanistically based on oxidation and subsequent hydrolysis of the phenylboronic ester-modified polymer, which modulates hydrophobic properties of fiber-optic devices, which was confirmed during characterization of the chemical functional group and hydrophobicity of the active sensing material. This work illustrates a useful strategy of exploiting principles of chemical modifications to design surface-wettable fiber-optic sensing devices for detecting reactive species of broad relevance to biological and environmental analyses.
Collapse
|
8
|
Radhakrishnan S, Lakshmy S, Santhosh S, Kalarikkal N, Chakraborty B, Rout CS. Recent Developments and Future Perspective on Electrochemical Glucose Sensors Based on 2D Materials. BIOSENSORS 2022; 12:467. [PMID: 35884271 PMCID: PMC9313175 DOI: 10.3390/bios12070467] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 05/09/2023]
Abstract
Diabetes is a health disorder that necessitates constant blood glucose monitoring. The industry is always interested in creating novel glucose sensor devices because of the great demand for low-cost, quick, and precise means of monitoring blood glucose levels. Electrochemical glucose sensors, among others, have been developed and are now frequently used in clinical research. Nonetheless, despite the substantial obstacles, these electrochemical glucose sensors face numerous challenges. Because of their excellent stability, vast surface area, and low cost, various types of 2D materials have been employed to produce enzymatic and nonenzymatic glucose sensing applications. This review article looks at both enzymatic and nonenzymatic glucose sensors made from 2D materials. On the other hand, we concentrated on discussing the complexities of many significant papers addressing the construction of sensors and the usage of prepared sensors so that readers might grasp the concepts underlying such devices and related detection strategies. We also discuss several tuning approaches for improving electrochemical glucose sensor performance, as well as current breakthroughs and future plans in wearable and flexible electrochemical glucose sensors based on 2D materials as well as photoelectrochemical sensors.
Collapse
Affiliation(s)
- Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| | - Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Shilpa Santhosh
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Brahmananda Chakraborty
- High Pressure and Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, Maharashtra, India
- Homi Bhabha National Institute, Mumbai 400 094, Maharashtra, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| |
Collapse
|
9
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
10
|
In-situ preparation of lactate-sensing membrane for the noninvasive and wearable analysis of sweat. Biosens Bioelectron 2022; 210:114303. [PMID: 35487135 DOI: 10.1016/j.bios.2022.114303] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
Abstract
In the wearable electrochemical biosensors, sensing signal duration is significantly dependent on the long-term stability of functional materials modified on the flexible substrate, the effect of pH changes of sweat on the sensing device and signal fluctuation caused by the bending of sensor. Here, we proposed a wearable biosensor based on the lactate-sensing membrane mainly constituted by Prussian blue (PB), reduced graphene oxide (rGO), Au nanoparticles and lactate oxidase (LOx). Based on the in-situ layer-by-layer spin-coating preparation method, the electrode surface was covered with an extensive and uniform PB/GO membrane with a high stability. After the electro-reduction of GO to rGO and the combination of urchin-like Au particles with sufficient tentacles to LOx, the sensing membrane showed the improved electron transport from the enzyme active center to the electrode. Therefore, the wearable biosensor achieved a high sensitivity of 40.6 μA mM-1 cm-2 in a range of 1-222 μM and a low sensitivity of 1.9 μA mM-1 cm-2 in a wide range of 0.222-25 mM, satisfying the requirement of the typical test. In addition, with the excellent running and mechanical stability, the lactate biosensor was successfully applied on volunteers' skin for real-time monitoring of perspiration in vivo. The results were comparable with ex vivo measurements achieved by a commercial lactate sensor. The wearable electrochemical biosensor provides a good candidate in the future for the evaluation of human sweat in sports and biomedical fields.
Collapse
|
11
|
Aghazadeh M, Rad HF, Cheraghali R. Ready-to-use binder-free Co(OH) 2 plates@porous rGO layers/Ni foam electrode for high-performance supercapacitors. RSC Adv 2022; 12:9276-9291. [PMID: 35424885 PMCID: PMC8985096 DOI: 10.1039/d1ra08683a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/23/2022] [Indexed: 01/07/2023] Open
Abstract
In this work, an outstanding nano-structured composite electrode is fabricated through the co-deposition of Co(OH)2 nanoplates and porous reduced GO (p-rGO) nanosheets onto Ni foam (NF). Through field emission scanning electron microscopy and transmission electron microscopy observations, it was confirmed that porous reduced graphene oxide sheets are completely wrapped by uniform hexagonal Co(OH)2 plates. Due to the unique architecture of both components of the prepared composite, a high surface area of 234.7 m2 g-1 and mean pore size of 3.65 nm were observed for the Co(OH)2@p-rGO composite. The constructed Co(OH)2@p-rGO/NF composite electrode shows higher energy storage capability compared to that of Co(OH)2/NF and p-rGO/NF electrodes. The Co(OH)2/NF electrode shows specific capacitances of 902 and 311 F g-1 at 5 and 30 A g-1, while the Co(OH)2@p-rGO/NF electrode delivers 1688 and 1355 F g-1 under the same current loads, respectively. Furthermore, when the current load was increased from 1 to 30 A g-1, 74.5% capacitance retention was observed for the Co(OH)2@p-rGO/NF electrode, indicating its outstanding high-power capability, while the Co(OH)2/NF electrode retained only 38.5% of its initial capacitance. The fabricated Co(OH)2@p-rGO/NF//rGO/NF ASC device shows an areal capacitance of 3.29 F cm-2, cycling retention of 91.2% after 4500 cycles at 5 A g-1 and energy density of 68.7 W h kg-1 at a power density of 895 W kg-1. The results of electrochemical tests prove that Co(OH)2@p-rGO/NF exhibits good performance as a positive electrode for use in an asymmetric supercapacitor device. The prepared porous composite electrode is thus a promising candidate for use in supercapacitor applications.
Collapse
Affiliation(s)
- Mustafa Aghazadeh
- Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran
| | - Hamzeh Forati Rad
- Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI) Tehran Iran
| | - Ramin Cheraghali
- Department of Chemistry, Islamic Azad University Saveh Branch Saveh Iran
| |
Collapse
|
12
|
Balkourani G, Damartzis T, Brouzgou A, Tsiakaras P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:355. [PMID: 35009895 PMCID: PMC8749877 DOI: 10.3390/s22010355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023]
Abstract
The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts' synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu- Co- and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values.
Collapse
Affiliation(s)
- Georgia Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
| | - Theodoros Damartzis
- Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, Sion, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Angeliki Brouzgou
- Department of Energy Systems, School of Technology, University of Thessaly, Geopolis, Regional Road Trikala-Larisa, 41500 Larisa, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
- Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), 620990 Yekaterinburg, Russia
| |
Collapse
|
13
|
Malathi S, Pakrudheen I, Kalkura SN, Webster T, Balasubramanian S. Disposable biosensors based on metal nanoparticles. SENSORS INTERNATIONAL 2022; 3:100169. [PMID: 35252890 PMCID: PMC8889882 DOI: 10.1016/j.sintl.2022.100169] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease2019 (COVID-19) pandemic has highlighted the need for disposable biosensors that can detect viruses in infected patients quickly due to fast response and also at a low cost.The present review provides an overview of the applications of disposable biosensors based on metal nanoparticles in enzymatic and non-enzymatic sensors with special reference to glucose and H2O2, immunosensors as well as genosensors (DNA biosensors in which the recognized event consists of the hybridization reaction)for point-of-care diagnostics. The disposable biosensors for COVID19 have also been discussed.
Collapse
Affiliation(s)
- S. Malathi
- Crystal Growth Centre, Anna University, Guindy, Chennai, 600025, India
| | - I. Pakrudheen
- Department of Chemistry, CMR Institute of Technology, Bengaluru, 560037, Karnataka, India
| | | | - T.J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - S. Balasubramanian
- Department of Inorganic Chemistry, University of Madras, Guindy, Chennai, 600025, India,Corresponding author
| |
Collapse
|
14
|
3D Prussian blue/Pt decorated carbon nanofibers based screen-printed microchips for the ultrasensitive hydroquinone biosensing. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Dong Q, Ryu H, Lei Y. Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137744] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Wang L, Wu Y, Sun C, Wang H, Ren J. Shape-controlled Cu 2O nanospheres as bifunctional catalysts boosting the oxidations of glucose and hydrazine. CrystEngComm 2021. [DOI: 10.1039/d1ce00913c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cuprous oxide (Cu2O) nanoparticles hold promise as low-cost catalysts for the oxidations of both glucose and hydrazine (N2H4). The shape-controlled growth of Cu2O crystals can regulate effectively its catalytic activities.
Collapse
Affiliation(s)
- Li Wang
- School of Chemistry & Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Yutai Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chaoyang Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092, Johannesburg, South Africa
| |
Collapse
|
17
|
Yuan C, Qin X, Xu Y, Jing Q, Shi R, Wang Y. High sensitivity detection of H2O2 and glucose based on carbon quantum dots-catalyzed 3, 3′, 5, 5′-tetramethylbenzidine oxidation. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Thatikayala D, Ponnamma D, Sadasivuni KK, Cabibihan JJ, Al-Ali AK, Malik RA, Min B. Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H 2O 2. BIOSENSORS-BASEL 2020; 10:bios10110151. [PMID: 33105571 PMCID: PMC7690282 DOI: 10.3390/bios10110151] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 01/28/2023]
Abstract
Non-enzymatic sensing has been in the research limelight, and most sensors based on nanomaterials are designed to detect single analytes. The simultaneous detection of analytes that together exist in biological organisms necessitates the development of effective and efficient non-enzymatic electrodes in sensing. In this regard, the development of sensing elements for detecting glucose and hydrogen peroxide (H2O2) is significant. Non-enzymatic sensing is more economical and has a longer lifetime than enzymatic electrochemical sensing, but it has several drawbacks, such as high working potential, slow electrode kinetics, poisoning from intermediate species and weak sensing parameters. We comprehensively review the recent developments in non-enzymatic glucose and H2O2 (NEGH) sensing by focusing mainly on the sensing performance, electro catalytic mechanism, morphology and design of electrode materials. Various types of nanomaterials with metal/metal oxides and hybrid metallic nanocomposites are discussed. A comparison of glucose and H2O2 sensing parameters using the same electrode materials is outlined to predict the efficient sensing performance of advanced nanomaterials. Recent innovative approaches to improve the NEGH sensitivity, selectivity and stability in real-time applications are critically discussed, which have not been sufficiently addressed in the previous reviews. Finally, the challenges, future trends, and prospects associated with advanced nanomaterials for NEGH sensing are considered. We believe this article will help to understand the selection of advanced materials for dual/multi non-enzymatic sensing issues and will also be beneficial for researchers to make breakthrough progress in the area of non-enzymatic sensing of dual/multi biomolecules.
Collapse
Affiliation(s)
- Dayakar Thatikayala
- Department of Environment Science and Engineering, Kyung Hee University, Yongin 446-701, Korea;
| | | | - Kishor Kumar Sadasivuni
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar;
- Correspondence: (K.K.S.); (B.M.)
| | - John-John Cabibihan
- Department of Mechanical and Industrial Engineering, Qatar University, P.O. Box 2713, Doha, Qatar;
| | | | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar;
| | - Booki Min
- Department of Environment Science and Engineering, Kyung Hee University, Yongin 446-701, Korea;
- Correspondence: (K.K.S.); (B.M.)
| |
Collapse
|
19
|
Yao X, Liu T, Xie Y, Chu Z, Jin W. In Situ-Forming Magnetic Fe 3O 4 Nanoroses on Defect-Controllable Mesoporous Graphene Oxide for Enzyme-Mimic Sensing. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyue Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| | - Ying Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, P. R. China
| |
Collapse
|
20
|
Facile preparation of novel Pd nanowire networks on a polyaniline hydrogel for sensitive determination of glucose. Anal Bioanal Chem 2020; 412:6849-6858. [PMID: 32740821 DOI: 10.1007/s00216-020-02816-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 01/21/2023]
Abstract
In this study, novel Pd nanowire networks (PdNW) grown on three-dimensional polyaniline hydrogel (3D-PANI) were prepared via a facile one-step electrodeposition approach at a constant potential of - 0.2 V and further utilized as an electrochemical sensing material for sensitive determination of glucose in alkaline medium. Compared with the sensor based on Pd nanofilm (PdNF)/3D-PANI prepared by electrodeposition at - 0.9 V, the sensor based on PdNW/3D-PANI presented substantially enhanced electrocatalytic activity towards glucose oxidation, with an excellent sensitivity of 146.6 μA mM-1 cm-2, a linear range from 5.0 to 9800 μM, and a low detection limit of 0.7 μM and was, therefore, demonstrated to be available for the determination of glucose in human serum. These findings are likely attributed to the combination of advantages of both PdNW and 3D-PANI, which outperformed most other Pd-based non-enzymatic glucose sensors reported earlier. Moreover, this non-enzymatic electrochemical sensor based on PdNW/3D-PANI may serve as an alternative tool for the assay of glucose and possibly other biomolecules. Graphical abstract.
Collapse
|
21
|
Xing Y, Si H, Sun D, Hou X. Magnetic Fe3O4@NH2-MIL-101(Fe) nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Liu T, Zhao Q, Xie Y, Jiang D, Chu Z, Jin W. In situ fabrication of aloe-like Au-ZnO micro/nanoarrays for ultrasensitive biosensing of catechol. Biosens Bioelectron 2020; 156:112145. [PMID: 32174562 DOI: 10.1016/j.bios.2020.112145] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
Abstract
Currently, the large-scale and controllable fabrication of nanostructures on substrates remains a great challenge for further practical applications. In this work, a novel 3D aloe-like Au-ZnO nanocomposite was designed for in situ synthesis on an ITO substrate, achieving real-time detection of trace catechol (CC) in water. A seed-assisted hydrothermal approach was proposed to control the crystal distribution and growth direction to build a ZnO aloe-like architecture. To eliminate the natural weak conductivity of ZnO, Au nanoparticles were further deposited on all ZnO arrays to construct Au-ZnO micro/nanostructures. The synergetic effects derived from the aloe-like ZnO with a large specific area and Au nanoparticles with high conductivity resulted in both high electrocatalysis and fast electron transfer in enzymatic reactions. After laccase immobilization, the as-prepared biosensor exhibited specific recognition of catechol among other dihydroxybenzenes and phenol with an ultrahigh sensitivity of 131 μA mM-1, as well as an extremely wide linear range from 75 nM to 1100 μM and an ultralow detection limit of 25 nM. In addition, in the detection of real lake samples, this biosensor showed satisfactory anti-interference ability and provided reliable assay results.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Qiang Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Ying Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Danfeng Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
23
|
High-performance non-enzymatic glucose electrochemical sensor constructed by transition nickel modified Ni@Cu-MOF. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113783] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Wang X, Wang M, Feng S, He D, Jiang P. Controlled synthesis of flower-like cobalt phosphate microsheet arrays supported on Ni foam as a highly efficient 3D integrated anode for non-enzymatic glucose sensing. Inorg Chem Front 2020. [DOI: 10.1039/c9qi00948e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CoPO MA/NF was synthesized in a controlled way and utilized as an efficient 3D integrated electrode for enzyme-free glucose sensing.
Collapse
Affiliation(s)
- Xue Wang
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Mingzhu Wang
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Shiya Feng
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Daiping He
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Ping Jiang
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| |
Collapse
|
25
|
Xu H, Han F, Xia C, Wang S, Zhuiykov S, Zheng G. Spinel sub-stoichiometric CuxCoyO4 nano-wire framework thin-film electrode for enhanced electrochemical non-enzymatic sensing of glucose. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Guo L, Zheng H, Zhang C, Qu L, Yu L. A novel molecularly imprinted sensor based on PtCu bimetallic nanoparticle deposited on PSS functionalized graphene with peroxidase-like activity for selective determination of puerarin. Talanta 2019; 210:120621. [PMID: 31987162 DOI: 10.1016/j.talanta.2019.120621] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/28/2022]
Abstract
In this work, PtCu bimetallic nanoparticle was deposited on poly (styrene sulfonate) (PSS) functionalized graphene (Gr) to form a nanocomposite PtCu/PSS-Gr and its enzyme-like activity was investigated. Benefiting from the synergistic effect from Pt and Cu monometal as well as the superior properties of PSS-Gr, such as large surface area, good dispersity, strong adsorption of substrate and additional peroxidase-like activity, the PtCu/PSS-Gr nanocomposite was demonstrated as an excellent peroxidase mimic to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Combined with molecularly imprinted polymer (MIP), a new colorimetric approach for puerarin detection was proposed with the linear range of 2 × 10-5-6 × 10-4 mol L-1 and LOD of 1 × 10-5 mol L-1. The combination of MIP with PtCu/PSS-Gr nanocomposite not only endowed the determination of puerarin with high selectivity, but also realized the detection of small molecules which are neither substrate of the nanozyme nor substances with strong oxidizing or reducing activity by using peroxidase-like catalytic activity of nanozyme, expanding the application of nanozyme.
Collapse
Affiliation(s)
- Lili Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Huijun Zheng
- North China University of Water Resources and Electric Power, Zhengzhou, 450045, PR China
| | - Cuijie Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lanlan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
27
|
Zhang J, Sun Y, Li X, Xu J. Fabrication of porous NiMn 2O 4 nanosheet arrays on nickel foam as an advanced sensor material for non-enzymatic glucose detection. Sci Rep 2019; 9:18121. [PMID: 31792429 PMCID: PMC6889510 DOI: 10.1038/s41598-019-54746-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022] Open
Abstract
In this work, porous NiMn2O4 nanosheet arrays on nickel foam (NiMn2O4 NSs@NF) was successfully fabricated by a simple hydrothermal step followed by a heat treatment. Porous NiMn2O4 NSs@NF is directly used as a sensor electrode for electrochemical detecting glucose. The NiMn2O4 nanosheet arrays are uniformly grown and packed on nickel foam to forming sensor electrode. The porous NiMn2O4 NSs@NF electrode not only provides the abundant accessible active sites and the effective ion-transport pathways, but also offers the efficient electron transport pathways for the electrochemical catalytic reaction by the high conductive nickel foam. This synergy effect endows porous NiMn2O4 NSs@NF with excellent electrochemical behaviors for glucose detection. The electrochemical measurements are used to investigate the performances of glucose detection. Porous NiMn2O4 NSs@NF for detecting glucose exhibits the high sensitivity of 12.2 mA mM−1 cm−2 at the window concentrations of 0.99–67.30 μM (correlation coefficient = 0.9982) and 12.3 mA mM−1 cm−2 at the window concentrations of 0.115–0.661 mM (correlation coefficient = 0.9908). In addition, porous NiMn2O4 NSs@NF also exhibits a fast response of 2 s and a low LOD of 0.24 µM. The combination of porous NiMn2O4 nanosheet arrays and nickel foam is a meaningful strategy to fabricate high performance non-enzymatic glucose sensor. These excellent properties reveal its potential application in the clinical detection of glucose.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P.R. China
| | - Yudong Sun
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, 121013, P.R. China
| | - Xianchun Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P.R. China.
| | - Jiasheng Xu
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, 121013, P.R. China.
| |
Collapse
|
28
|
Simple flow injection system for non-enzymatic glucose sensing based on an electrode modified with palladium nanoparticles-graphene nanoplatelets/mullti-walled carbon nanotubes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134621] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Zheng W, Li Y, Lee LYS. Insights into the transition metal ion-mediated electrooxidation of glucose in alkaline electrolyte. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Bifunctional gold nanoclusters enable ratiometric fluorescence nanosensing of hydrogen peroxide and glucose. Talanta 2019; 197:599-604. [DOI: 10.1016/j.talanta.2019.01.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 11/20/2022]
|
31
|
Shahrivari S, Kowsari E, Shockravi A, Ehsani A. Synthesis of different new copolyimides and influence of different molar ratios of diamines and dianhydride on pseudocapacitance performance of p-type conductive polymer. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Wang J, Xie T, Deng Q, Wang Y, Zhu Q, Liu S. Three-dimensional interconnected Co(OH)2 nanosheets on Ti mesh as a highly sensitive electrochemical sensor for hydrazine detection. NEW J CHEM 2019. [DOI: 10.1039/c8nj06008h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three-dimensional interconnected Co(OH)2 nanosheets on TM, prepared by low cost and simple electrodeposition method, exhibit highly sensitive electrochemical hydrazine detection.
Collapse
Affiliation(s)
- Jiankang Wang
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 408100
- China
- School of Chemistry and Chemical Engineering
| | - Taiping Xie
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 408100
- China
| | - Qihuang Deng
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 408100
- China
| | - Yajing Wang
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 408100
- China
- School of Chemistry and Chemical Engineering
| | - Quanxi Zhu
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 408100
- China
| | - Songli Liu
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 408100
- China
| |
Collapse
|
33
|
Liu T, Chu Z, Jin W. Electrochemical mercury biosensors based on advanced nanomaterials. J Mater Chem B 2019. [DOI: 10.1039/c9tb00418a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review presents an overview of the synthesis strategies and electrochemical performance of recently developed nanomaterials for the Hg2+ assay.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Material-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Zhenyu Chu
- State Key Laboratory of Material-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Wanqin Jin
- State Key Laboratory of Material-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| |
Collapse
|
34
|
Jiang D, Pang J, You Q, Liu T, Chu Z, Jin W. Simultaneous biosensing of catechol and hydroquinone via a truncated cube-shaped Au/PBA nanocomposite. Biosens Bioelectron 2018; 124-125:260-267. [PMID: 30322684 DOI: 10.1016/j.bios.2018.09.094] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 01/12/2023]
Abstract
A simultaneous testing of the trace catechol (CC) and hydroquinone (HQ) was achieved via an ultrasensitive phenolic biosensor constructed by the truncated cube-shaped gold/Prussian blue analogue (Au/PBA) nanocomposites. A facile charge-assembly strategy was developed to drive the successive mutual attractions for the crystallization among [Fe(CN)6]3-, Co2+, and [AuCl4]- reactants, benefiting the in-situ growth of Au nanoparticles on all faces of the PBA truncated nanocubes. On account of this special architecture, numerous 10 nm Au particles can rapidly gather the electrons from the enzyme reaction to a PBA crystal due to their high conductivity, and then the current signals will be significantly magnified through the reversible redox of the PBA. Using this nanomaterial, the as-prepared biosensor has shown an extreme wide linear range (CC: 0.2-550 µM, HQ: 1-550 µM) and an ultralow detection limit (CC: 0.06 ± 0.001 µM, HQ: 0.3 ± 0.007 µM) for the independent detections of CC and HQ. More importantly, when the two targets coexist, this biosensor can simultaneously exhibit the obvious and accurate responses of CC and HQ at the different potentials (0.17 V for CC and 0.07 V for HQ) with the high sensitivities and rare mutually interferences.
Collapse
Affiliation(s)
- Danfeng Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Jun Pang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Qiannan You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China.
| |
Collapse
|
35
|
Ding Y, Wang G, Sun F, Lin Y. Heterogeneous Nanostructure Design Based on the Epitaxial Growth of Spongy MoS x on 2D Co(OH) 2 Nanoflakes for Triple-Enzyme Mimetic Activity: Experimental and Density Functional Theory Studies on the Dramatic Activation Mechanism. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32567-32578. [PMID: 30169014 DOI: 10.1021/acsami.8b10560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we present a three-in-one catalytic platform for intrinsic oxidase-, peroxidase-, and catalase-like activity, which is enabled by epitaxial growth of the MoS x nanosponge on 2D Co(OH)2 nanoflakes [2D Co(OH)2 NFs] (CoMo hybrids). First, the 2D Co(OH)2 NFs are stripped from hierarchical three-dimensional Co(OH)2 nanoflowers which are synthesized in an eco-friendly way via one-step surfactant-free chemical route. Next, the porous MoS x nanosponge is decorated on the 2D Co(OH)2 NFs' surface using a solvothermal process forming heterogeneous nanostructured CoMo hybrids. Finally, because of the host-guest interaction, that is, after the epitaxial growth of spongy MoS x on 2D Co(OH)2 NFs, the heterogeneous nanostructure of CoMo hybrids exhibits unpredictable triple-enzyme mimetic activity simultaneously. The mechanisms of the oxidase-like properties are investigated by density functional theory (DFT) calculations, and it is discovered that a simple reaction/dissociation of O2 absorbed on Co-Mo thin films can explain the enhanced oxidase-like activity of the CoMo hybrids. In addition, the CoMo hybrids are also reproducible, stable, and reusable, that is, after 10 cycle uses, >90% mimic enzyme activity of the CoMo hybrids is still maintained. The oxidase-like activity of the CoMo hybrids enables it to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) producing the blue oxTMB, which can selectively oxidize ascorbic acid (AA) and pave a new avenue for colorimetric sensing of AA. The proposed colorimetric strategy has been successfully utilized to measure AA in rat brain during the cerebral calm/ischemia process. Our findings provide in-depth insight into the future research of enzyme-like activities and might help to elucidate the mechanism and understand the role of epitaxial growth on the properties and application of hybrid nanostructures.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Guo Wang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Fengzhan Sun
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Yuqing Lin
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| |
Collapse
|