1
|
Huang Z, Qi X, Zhang H, Liu L, Zhang Z, Yang Z, Wei J. Innovative Separator Engineering: Hydrogen Bond-Driven Layer-By-Layer Assembly for Enhanced Stability and Efficiency in Lithium Metal Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9989-9999. [PMID: 40219975 DOI: 10.1021/acs.langmuir.5c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Lithium metal batteries (LMBs) face critical challenges due to uncontrolled lithium dendrite growth and inhomogeneous Li+ flux, largely attributed to conventional separators' poor interfacial compatibility. To address this, we propose a hydrogen bond-driven layer-by-layer (LbL) assembly strategy for engineering functional separators using poly(vinyl alcohol) (PVA) and tannic acid (TA). The optimized PP/(TA/PVA)15 separator leverages the synergistic interplay between PVA's hydroxyl groups and TA's carbonyl moieties, forming a robust hydrogen-bonded network that simultaneously enhances lithiophilicity, regulates Li+ flux uniformity, and immobilizes anions. The interfacial design achieves exceptional electrochemical performance: Li//Li symmetric cells maintain stable operation for 800 h at 0.5 mA cm-2/0.5 mAh cm-2, while Li//LiFePO4 half cells retain 73.8% capacity after 1000 cycles at 5C (decay rate: 0.026% per cycle). The separator further exhibits high ionic conductivity (0.94 mS cm-1) and Li+ transference number (0.63), outperforming conventional polyolefin counterparts. By integrating simplicity, scalability, and eco-friendliness, this work pioneers a universal interface chemistry paradigm for next-generation LMBs, offering transformative insights into separator engineering through molecular-level hydrogen-bonding control.
Collapse
Affiliation(s)
- Zhuqing Huang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xingtao Qi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hai Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Liequan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ze Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhenyu Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Junchao Wei
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Jiangxi Provincial Key Laboratory of Oral Disease, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| |
Collapse
|
2
|
Fan Z, Chen X, Shi J, Nie H, Zhang X, Zhou X, Xie X, Xue Z. Functionalized Separators Boosting Electrochemical Performances for Lithium Batteries. NANO-MICRO LETTERS 2025; 17:128. [PMID: 39907892 PMCID: PMC11799521 DOI: 10.1007/s40820-024-01596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 02/06/2025]
Abstract
The growing demands for energy storage systems, electric vehicles, and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries. It is essential to design functional separators with improved mechanical and electrochemical characteristics. This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques. In terms of electrolyte wettability and adhesion of the coating materials, we provide an overview of the current status of research on coated separators, in situ modified separators, and grafting modified separators, and elaborate additional performance parameters of interest. The characteristics of inorganics coated separators, organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared. Future directions regarding new modified materials, manufacturing process, quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
Collapse
Affiliation(s)
- Zixin Fan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiaoyu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jingjing Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Shenzhen Senior Technology Material Co. Ltd., Shenzhen, 518000, People's Republic of China
| | - Hui Nie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Xiaoming Zhang
- Shenzhen Senior Technology Material Co. Ltd., Shenzhen, 518000, People's Republic of China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
3
|
Wang R, Huang Q, Hong G, Liu Y, Liu C, Li J, Li L, Qu Q. Eco-friendly versatile shielding revolution: Tannin tailored bamboo waste composite with wave-absorbing, flame retardancy, and antibacterial abilities. Int J Biol Macromol 2024; 277:134162. [PMID: 39069061 DOI: 10.1016/j.ijbiomac.2024.134162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The swift evolution of fifth-generation technology has intensified the need for lightweight, high-efficiency, and low-reflection multifunctional electromagnetic interference shielding materials, crucial in combating escalating electromagnetic pollution in complex application environments. To tackle these challenges, an innovative solution has emerged: a biocomposite crafted from discarded bamboo materials. This innovation incorporates a meticulously engineered functional coating composed of tannic acid, boric acid, and polyvinyl alcohol. Additionally, the integration of highly conductive Ti3C2Tx (MXene) nanosheets onto the surface of bamboo powders enhances the EMI shielding efficiency of composites, achieving an impressive ∼40.9 dB. Meanwhile, significant improvements in mechanical reinforcement have been achieved, along with increases in the relative values of key performance indicators: tensile strength (89.8 %), tensile modulus (79.6 %), flexural strength (51.6 %), flexural modulus (35.1 %), and impact strength (45.4 %). Furthermore, the introduction of functional components grants the composite exceptional flame retardancy and antibacterial properties against both Gram-negative and Gram-positive bacteria. Beyond these strides, the utilization of bamboo waste as a composite pioneer a paradigm shift in waste utilization, converting refuse into invaluable resources.
Collapse
Affiliation(s)
- Rong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiude Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Gonghua Hong
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yan Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengyang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jialiang Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
4
|
Min Y, Liu T, Zhang B, Guo L, Wu A, Xian D, Wang L. Inhibition of lithium dendrite growth by high-thermal-stability separator containing sulfonated covalent organic frameworks and polybenzimidazole. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Ma S, Hou Y, Hao J, Lin C, Zhao J, Sui X. Well-Defined Nanostructures by Block Copolymers and Mass Transport Applications in Energy Conversion. Polymers (Basel) 2022; 14:polym14214568. [PMID: 36365562 PMCID: PMC9655174 DOI: 10.3390/polym14214568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
With the speedy progress in the research of nanomaterials, self-assembly technology has captured the high-profile interest of researchers because of its simplicity and ease of spontaneous formation of a stable ordered aggregation system. The self-assembly of block copolymers can be precisely regulated at the nanoscale to overcome the physical limits of conventional processing techniques. This bottom-up assembly strategy is simple, easy to control, and associated with high density and high order, which is of great significance for mass transportation through membrane materials. In this review, to investigate the regulation of block copolymer self-assembly structures, we systematically explored the factors that affect the self-assembly nanostructure. After discussing the formation of nanostructures of diverse block copolymers, this review highlights block copolymer-based mass transport membranes, which play the role of “energy enhancers” in concentration cells, fuel cells, and rechargeable batteries. We firmly believe that the introduction of block copolymers can facilitate the novel energy conversion to an entirely new plateau, and the research can inform a new generation of block copolymers for more promotion and improvement in new energy applications.
Collapse
|
6
|
Luo L, Gao Z, Zheng Z, Zhang J. "Polymer-in-Ceramic" Membrane for Thermally Safe Separator Applications. ACS OMEGA 2022; 7:35727-35734. [PMID: 36249377 PMCID: PMC9557889 DOI: 10.1021/acsomega.2c03689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2023]
Abstract
In this work, a facile casting method was utilized to prepare "polymer-in-ceramic" microporous membranes for thermally safe battery separator applications; that is, a series of composite membranes composed of silicon dioxide (SiO2) as a matrix and polyvinylidene fluoride (PVDF) as a binder were prepared. The effects of different SiO2 contents on various physical properties of membranes such as the porosity, electrolyte absorption rate, electrochemical stability, and especially thermal stability of the SiO2/PVDF composite membranes were systematically studied. Compared with a commercial polypropylene separator, the SiO2/PVDF membrane has a higher porosity (66.0%), electrolyte absorption (239%), and ion conductivity (1.0 mS·cm-1) and superior thermal stability (only 2.1% shrinkage at 200 °C for 2 h) and flame retardancy. When the content of SiO2 in the membrane reached 60% (i.e., PS6), LiFePO4/PS6/Li half-cells exhibited excellent cycle stability (138.2 mA h·g-1 discharging capacity after 100 cycles at 1C) and Coulombic efficiency (99.1%). The above advantages coupled with the potential for rapid and large-scale production reveal that the "polymer-in-ceramic" SiO2/PVDF membrane has prospective separator applications in secondary lithium-ion batteries.
Collapse
Affiliation(s)
- Lin Luo
- College
of Mechanical and Electrical Engineering, Power & Energy Storage
System Research Center, Qingdao University, Qingdao 266071, China
| | - Zhihao Gao
- College
of Mechanical and Electrical Engineering, Power & Energy Storage
System Research Center, Qingdao University, Qingdao 266071, China
| | - Zongmin Zheng
- College
of Mechanical and Electrical Engineering, Power & Energy Storage
System Research Center, Qingdao University, Qingdao 266071, China
- National
Engineering Research Center for Intelligent Electrical Vehicle Power
System (Qingdao), Qingdao 266071, China
| | - Jianmin Zhang
- College
of Mechanical and Electrical Engineering, Power & Energy Storage
System Research Center, Qingdao University, Qingdao 266071, China
- National
Engineering Research Center for Intelligent Electrical Vehicle Power
System (Qingdao), Qingdao 266071, China
| |
Collapse
|
7
|
Ding L, Li D, Du F, Zhang D, Zhang S, Xu R, Wu T. Fabrication of Nano-Al 2O 3 in-Situ Coating Lithium-Ion Battery Separator Based on Synchronous Biaxial Stretching Mechanism of β-Crystal Polypropylene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Ding
- Shandong key laboratory of chemical energy storage and new battery technology, School of chemistry and chemical engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Dandan Li
- Shandong key laboratory of chemical energy storage and new battery technology, School of chemistry and chemical engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Fanghui Du
- Shandong key laboratory of chemical energy storage and new battery technology, School of chemistry and chemical engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Daoxin Zhang
- State key laboratory of polymer materials engineering, College of polymer science and engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State key laboratory of polymer materials engineering, College of polymer science and engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610041, China
| | - Tong Wu
- State key laboratory of polymer materials engineering, College of polymer science and engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
8
|
Pargoletti E, Arnaboldi S, Cappelletti G, Longhi M, Meroni D, Minguzzi A, Mussini PR, Rondinini S, Vertova A. Smart interfaces in Li-ion batteries: Near-future key challenges. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Hao H, Hutter T, Boyce BL, Watt J, Liu P, Mitlin D. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries. Chem Rev 2022; 122:8053-8125. [PMID: 35349271 DOI: 10.1021/acs.chemrev.1c00838] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkali metal batteries based on lithium, sodium, and potassium anodes and sulfur-based cathodes are regarded as key for next-generation energy storage due to their high theoretical energy and potential cost effectiveness. However, metal-sulfur batteries remain challenged by several factors, including polysulfides' (PSs) dissolution, sluggish sulfur redox kinetics at the cathode, and metallic dendrite growth at the anode. Functional separators and interlayers are an innovative approach to remedying these drawbacks. Here we critically review the state-of-the-art in separators/interlayers for cathode and anode protection, covering the Li-S and the emerging Na-S and K-S systems. The approaches for improving electrochemical performance may be categorized as one or a combination of the following: Immobilization of polysulfides (cathode); catalyzing sulfur redox kinetics (cathode); introduction of protective layers to serve as an artificial solid electrolyte interphase (SEI) (anode); and combined improvement in electrolyte wetting and homogenization of ion flux (anode and cathode). It is demonstrated that while the advances in Li-S are relatively mature, less progress has been made with Na-S and K-S due to the more challenging redox chemistry at the cathode and increased electrochemical instability at the anode. Throughout these sections there is a complementary discussion of functional separators for emerging alkali metal systems based on metal-selenium and the metal-selenium sulfide. The focus then shifts to interlayers and artificial SEI/cathode electrolyte interphase (CEI) layers employed to stabilize solid-state electrolytes (SSEs) in metal-sulfur solid-state batteries (SSBs). The discussion of SSEs focuses on inorganic electrolytes based on Li- and Na-based oxides and sulfides but also touches on some hybrid systems with an inorganic matrix and a minority polymer phase. The review then moves to practical considerations for functional separators, including scaleup issues and Li-S technoeconomics. The review concludes with an outlook section, where we discuss emerging mechanics, spectroscopy, and advanced electron microscopy (e.g. cryo-transmission electron microscopy (cryo-TEM) and cryo-focused ion beam (cryo-FIB))-based approaches for analysis of functional separator structure-battery electrochemical performance interrelations. Throughout the review we identify the outstanding open scientific and technological questions while providing recommendations for future research topics.
Collapse
Affiliation(s)
- Hongchang Hao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tanya Hutter
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brad L Boyce
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87110, United States
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengcheng Liu
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - David Mitlin
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Guo H, Li M, Li F, Zhu Q, Zhao Y, Wang F, Qin Z. Enhanced Wettability of PTFE Porous Membrane for High Temperature Stable LIB Separator. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongxia Guo
- Faculty of Materials and Manufacturing Beijing University of Technology Nanmofang Street, Pingleyuan No. 100 Beijing 100124 China
| | - Mingye Li
- Faculty of Materials and Manufacturing Beijing University of Technology Nanmofang Street, Pingleyuan No. 100 Beijing 100124 China
| | - Fan Li
- Faculty of Environmental and Life Beijing University of Technology Nanmofang Street, Pingleyuan No. 100 Beijing 100124 China
| | - Qizhen Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beisanhuan East Road 15 Beijing 100029 China
| | - Yao Zhao
- Faculty of Materials and Manufacturing Beijing University of Technology Nanmofang Street, Pingleyuan No. 100 Beijing 100124 China
| | - Feng Wang
- Faculty of Environmental and Life Beijing University of Technology Nanmofang Street, Pingleyuan No. 100 Beijing 100124 China
| | - Zhenping Qin
- Faculty of Environmental and Life Beijing University of Technology Nanmofang Street, Pingleyuan No. 100 Beijing 100124 China
| |
Collapse
|
11
|
Ding L, Yan N, Zhang S, Xu R, Wu T, Yang F, Cao Y, Xiang M. Low-Cost Mass Manufacturing Technique for the Shutdown-Functionalized Lithium-Ion Battery Separator Based on Al 2O 3 Coating Online Construction during the β-iPP Cavitation Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6714-6728. [PMID: 35089698 DOI: 10.1021/acsami.1c22080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A shutdown-functionalized lithium-ion battery separator plays a pivotal role in preventing thermal runaway as cells experience electrical abuse, overcharge, and external short circuit. In this article, the trilayer separator endowed with shutdown function was fabricated by ingenious co-extrusion and bidirectional drawing based on the nano-Al2O3 coating online construction during the β-iPP cavitation process. The middle layer composed of nano-Al2O3, polyethylene, and polypropylene offers a shutdown temperature of 130 °C, and skin polypropylene layers with nano-Al2O3 coating hold optimized dimensional stability below the meltdown temperature. Crystal structure measurement and pore structure diagnosis disclose that nano-Al2O3 thins coarse fibrils and makes the porous structure uniform. De-bonding of nano-Al2O3/β-iPP interfaces retains nano-Al2O3 not only on the top surface of the separator but also on the pore intine to realize nano-Al2O3 coating online construction, consequently strengthening tensile capacity, dimensional stability to heating, and electrolyte affinity. Electrochemical tests further disclose that nano-Al2O3 coating stabilizes solid electrolyte interphase germination and heightens lithium-ion migration numbers, confining cell resistances and granting optimal high-rate performance and cycling ability. The proposed approach features simple technics, environment-friendly, continuous fabrication, and coating online construction, which can offer new ideas for the mass fabricating of the high-end separator.
Collapse
Affiliation(s)
- Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Ning Yan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610041, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
12
|
Zhao X, Huang C, Tang Q, Hao Y, Zhang Y, Hu A, Chen X. A Simple Approach towards Highly Dense Graphene Films for High Volumetric Performance Supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202101451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Zhao
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 P. R. China
| | - Cong Huang
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 P. R. China
| | - Qunli Tang
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 P. R. China
| | - Yisu Hao
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 P. R. China
| | - Yan Zhang
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 P. R. China
| | - Aiping Hu
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 P. R. China
| | - Xiaohua Chen
- College of Materials Science and Engineering Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 P. R. China
| |
Collapse
|
13
|
Separator impregnated with polyvinyl alcohol to simultaneously improve electrochemical performances and compression resistance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Mussel-inspired environmentally friendly dipping system for aramid fiber and its interfacial adhesive mechanism with rubber. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Ding L, Yan N, Zhang S, Xu R, Wu T, Yang F, Cao Y, Xiang M. Low-Cost and Large-Scale Fabricating Technology for High-Performance Lithium-Ion Battery Composite Separators with Connected Nano-Al2O3 Coating. ACS APPLIED ENERGY MATERIALS 2021. [DOI: 10.1021/acsaem.1c03137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Ning Yan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610065, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
16
|
Zhang D, Ding L, Wu T, Yang F, Lan F, Cao Y, Xiang M. Facile Preparation of a Lithium-Ion Battery Separator with Thermal Shutdown Function Based on Polypropylene/Polyethylene Microsphere Composites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daoxin Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Ding
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fang Lan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Zhang Y, Qiu Z, Wang Z, Yuan S. Functional polyethylene separator with impurity entrapment and faster Li + ions transfer for superior lithium-ion batteries. J Colloid Interface Sci 2021; 607:742-751. [PMID: 34534765 DOI: 10.1016/j.jcis.2021.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/30/2022]
Abstract
An organic/inorganic hybrid coating consisting of molecular sieve (MS)/sulfonated melamine formaldehyde condensate (SMF) is fabricated on the polyethylene (PE) separator by a simple dip-coating process. The MS/SMF coating with high polarity enhances the electrolyte uptake of PE separator, and therefore favors higher ionic conductivity and Li+ transference number of separators. By regulating the ratio of MS/SMF, much higher Li+ transference number up to 0.5 can be obtained compared with the original PE separator (0.25). The PE separator possesses highest effective Li+ ionic conductivity when the ratio of MS/SMF is 3:1, which promotes more uniform Li+ deposition on the lithium metal surface for excellent lithium plating/stripping cycling stability up to 1000 h without any signs of short-circuit. Moreover, the functional PE separator possesses excellent H2O and HF capturing ability due to strong adsorption of MS and SMF for H2O and the scavenging of SMF for HF. The MS-SMF@PE separator-employed LiCoO2/Li unit cell shows superior C-rates capability and cycling performance, and no obvious lithium dendrite growth is found on the surface of lithium metal anode after cycling.
Collapse
Affiliation(s)
- Yuchen Zhang
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
| | - Zhengfu Qiu
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
| | - Zhuyi Wang
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China.
| | - Shuai Yuan
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China; Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang 314006, China.
| |
Collapse
|
18
|
Ma H, Liu J, Hua H, Peng L, Shen X, Wang X, Zhang P, Zhao J. Facile Fabrication of Functionalized Separators for Lithium-Ion Batteries with Ionic Conduction Path Modifications via the γ-Ray Co-irradiation Grafting Process. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27663-27673. [PMID: 34086452 DOI: 10.1021/acsami.1c06460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Separators play a vital role in electronic insulation and ionic conduction in lithium-ion batteries. The common improvement strategy of polyolefin separators is mostly based on modifications with a coating layer, which is simple and effective to some extent. However, the improvement is often accompanied by negative effects such as the increase of the thickness and the blockage of the porous structure, resulting in the decrease of energy density and power density. The porous structure of the separators serves as a conduction path for ions to travel back and forth between the anode and cathode, which has an important impact on the performance of lithium-ion batteries. If the porous structure of the separators can be modified, it will essentially affect the ionic transport behavior through the whole conduction path. Herein, we provide a simple and effective method to functionalize the porous polyolefin separator via the γ-ray co-irradiation grafting process, where high-energy γ-ray is used to generate active sites on the polymer chain to initiate the grafting polymerization of chosen monomers with selected functional groups. In this work, 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane, a kind of borane molecule with an electron-deficient group, was chosen as the grafting monomer. After the γ-ray co-irradiation grafting process, both the surface and pores of the polyolefin separators were functionalized by electron-deficient groups in the borane molecule and the whole electrolyte conduction path within the separator was activated. Due to the electron-deficient effect of the B atom, the lithium-ion conduction is promoted and the lithium-ion transference number can be increased to 0.5. As a result, the half-cell assembled with the functionalized separator shows better cycle stability and better capacity retention under high current rate.
Collapse
Affiliation(s)
- Haoshen Ma
- College of Energy, Xiamen University, Xiamen 361102, P. R. China
| | - Jiaxiang Liu
- College of Energy, Xiamen University, Xiamen 361102, P. R. China
| | - Haiming Hua
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Engineering Research Center of Electrochemical Technology, Ministry of Education, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Longqing Peng
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Engineering Research Center of Electrochemical Technology, Ministry of Education, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiu Shen
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Engineering Research Center of Electrochemical Technology, Ministry of Education, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xin Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Engineering Research Center of Electrochemical Technology, Ministry of Education, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peng Zhang
- College of Energy, Xiamen University, Xiamen 361102, P. R. China
| | - Jinbao Zhao
- College of Energy, Xiamen University, Xiamen 361102, P. R. China
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Engineering Research Center of Electrochemical Technology, Ministry of Education, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
19
|
Li Y, Shi S, Cao H, Cao R. Robust antifouling anion exchange membranes modified by graphene oxide (GO)-enhanced Co-deposition of tannic acid and polyethyleneimine. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119111] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Saha S, Dawood S, Butreddy P, Pathiraja G, Rathnayake H. Novel biodegradable low- κ dielectric nanomaterials from natural polyphenols. RSC Adv 2021; 11:16698-16705. [PMID: 35479177 PMCID: PMC9032199 DOI: 10.1039/d1ra01513c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 11/25/2022] Open
Abstract
Biodegradable natural polymers and macromolecules for transient electronics have great potential to reduce the environmental footprint and provide opportunities to create emerging and environmentally sustainable technologies. Creating complex electronic devices from biodegradable materials requires exploring their chemical design pathways to use them as substrates, dielectric insulators, conductors, and semiconductors. While most research exploration has been conducted using natural polymers as substrates for electronic devices, a very few natural polymers have been explored as dielectric insulators, but they possess high dielectric constants. Herein, for the first time, we have demonstrated a natural polyphenol-based nanomaterial, derived from tannic acid as a low-κ dielectric material by introducing a highly nanoporous framework with a silsesquioxane core structure. Utilizing natural tannic acid, porous "raspberry-like" nanoparticles (TA-NPs) are prepared by a sol-gel polymerization method, starting from reactive silane unit-functionalized tannic acid. Particle composition, thermal stability, porosity distribution, and morphology are analyzed, confirming the mesoporous nature of the nanoparticles with an average pore diameter ranging from 19 to 23 nm, pore volume of 0.032 cm3 g-1 and thermal stability up to 350 °C. The dielectric properties of the TA-NPs, silane functionalized tannic acid precursor, and tannic acid are evaluated and compared by fabricating thin film capacitors under ambient conditions. The dielectric constants (κ) are found to be 2.98, 2.84, and 2.69 (±0.02) for tannic acid, tannic acid-silane, and TA-NPs, respectively. The unique chemical design approach developed in this work provides us with a path to create low-κ biodegradable nanomaterials from natural polyphenols by weakening their polarizability and introducing high mesoporosity into the structure.
Collapse
Affiliation(s)
- Sujoy Saha
- Nanoscience Department, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro NC 27401 USA
| | - Sheeba Dawood
- Nanoscience Department, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro NC 27401 USA
| | - Pravalika Butreddy
- Nanoscience Department, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro NC 27401 USA
| | - Gayani Pathiraja
- Nanoscience Department, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro NC 27401 USA
| | - Hemali Rathnayake
- Nanoscience Department, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro NC 27401 USA
| |
Collapse
|
21
|
Chen D, Wang X, Liang J, Zhang Z, Chen W. A Novel Electrospinning Polyacrylonitrile Separator with Dip-Coating of Zeolite and Phenoxy Resin for Li-ion Batteries. MEMBRANES 2021; 11:membranes11040267. [PMID: 33917680 PMCID: PMC8068060 DOI: 10.3390/membranes11040267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022]
Abstract
Commercial separators (polyolefin separators) for lithium-ion batteries still have defects such as low thermostability and inferior interface compatibility, which result in serious potential safety distress and poor electrochemical performance. Zeolite/Polyacrylonitrile (Z/PAN) composite separators have been fabricated by electrospinning a polyacrylonitrile (PAN) membrane and then dip-coating it with zeolite (ZSM-5). Different from commercial separators, the Z/PAN composite separators exhibit high electrolyte uptake, excellent ionic conductivity, and prominent thermal stability. Specifically, the Z/PAN-1.5 separator exhibits the best performance, with a high electrolyte uptake of 308.1% and an excellent ionic conductivity of 2.158 mS·cm-1. The Z/PAN-1.5 separator may mechanically shrink less than 10% when held at 180 °C for 30 min, proving good thermal stability. Compared with the pristine PAN separator, the Li/separator/LiFePO4 cells with the Z/PAN-1.5 composite separator have excellent high-rate discharge capacity (102.2 mAh·g-1 at 7 C) and favorable cycling performance (144.9 mAh·g-1 at 0.5 C after 100 cycles). Obviously, the Z/PAN-1.5 separator holds great promise in furthering the safety and performance of lithium-ion batteries.
Collapse
Affiliation(s)
- Danxia Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (D.C.); (Z.Z.); (W.C.)
| | - Xiang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (D.C.); (Z.Z.); (W.C.)
- Correspondence: (X.W.); (J.L.)
| | - Jianyu Liang
- Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Correspondence: (X.W.); (J.L.)
| | - Ze Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (D.C.); (Z.Z.); (W.C.)
| | - Weiping Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (D.C.); (Z.Z.); (W.C.)
| |
Collapse
|
22
|
Sang K, Wang B, Ge J, Zhu T, Jiang Y, Zhao L, Zhou M, Liang H. Bidentate Phosphonate‐Functionalized Ionic Liquid Exhibiting Better Ability in Improving the Performance of Lithium‐Ion Battery. ChemistrySelect 2021. [DOI: 10.1002/slct.202004804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kunming Sang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Binbin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Jiawen Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Taofeng Zhu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Yufei Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Mingjiong Zhou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province Department of Chemistry School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| |
Collapse
|
23
|
Sun CC, Song YZ, Yan Y, Yuan JJ, Huang Z, Fang LF, Zhu BK. Integrating flexible PMIA separator and electrode for dealing with multi-aspect issues in Li–S batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Sheng L, Xu R, Zhang H, Bai Y, Song S, Liu G, Wang T, Huang X, He J. The morphology of polyethylene (PE) separator for lithium-ion battery tuned by the extracting process. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Tan L, Li Z, Shi R, Quan F, Wang B, Ma X, Ji Q, Tian X, Xia Y. Preparation and Properties of an Alginate-Based Fiber Separator for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38175-38182. [PMID: 32803956 DOI: 10.1021/acsami.0c10630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The membrane is one of the key inner parts of lithium-ion batteries, which determines the interfacial structure and internal resistance, ultimately affecting the capacity, cycling, and safety performance of the cell. In this article, an alginate-based fiber composite membrane was successfully fabricated from cellulose and calcium alginate with flame-retardant properties via a traditional papermaking process. In the membrane, the calcium alginate plays a bridging role and the cellulose acts as a filler. After 100 cycles, lithium-ion batteries by the alginate-based fiber separator exhibited better capacity retention ratios (approximately 90%) compared with those of commercial PP separators. Furthermore, the alginate-based fiber separator demonstrated fine thermal stability and electrochemical properties, showing a stable charge-discharge capability and no hot melt shrinkage at higher temperatures, which is a breakthrough in improving the safety of the cell. This research affords a new way for the large-scale fabrication of safe lithium-ion battery separators.
Collapse
Affiliation(s)
- Liwen Tan
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Zhenxing Li
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Ran Shi
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Fengyu Quan
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Bingbing Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Xiaomei Ma
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Quan Ji
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Xing Tian
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Yanzhi Xia
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| |
Collapse
|
26
|
Copolymer-assisted Polypropylene Separator for Fast and Uniform Lithium Ion Transport in Lithium-ion Batteries. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2455-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Liu J, Huang J, Cai Q, Yang Y, Luo W, Zeng B, Xu Y, Yuan C, Dai L. Design of Slidable Polymer Networks: A Rational Strategy to Stretchable, Rapid Self-Healing Hydrogel Electrolytes for Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20479-20489. [PMID: 32283918 DOI: 10.1021/acsami.0c03224] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogel electrolytes are of particular interest in the fabrication of flexible supercapacitors that are able to withstand deformation and physical damage. Nevertheless, there still exists a huge space in the design of hydrogel electrolytes with comprehensive performances including high processability, conductivity, mechanical strength, and self-healability. Herein, a slidable polymer network is constructed through the cross-linking reaction among commercially available polyethyleneimine (PEI), polyvinyl alcohol (PVA), and 4-formylphenylboronic acid (Bn) to generate PEI-PVA-Bn hydrogels, which have high adaptability to various electrolytes such as LiCl, NaCl, KCl, and ionic liquids. The as formed hydrogel electrolytes not only show excellent mechanical property (elongation at break up to 1223%, strength of 34.6 kPa) and self-healability (highest strain self-healing efficiency reaches 94.3% within 2 min) but also exhibit high conductivity (up to 21.49 mS cm-1). Flexible supercapacitors constructed by sandwiching the PEI-PVA-Bn-LiCl hydrogel electrolyte between two multiwalled carbon nanotube electrodes demonstrate a broadened operating potential window of 1.4 V, specific capacitance of 16.7 mF cm-2, high cycling stability up to 10 000 charge/discharge cycles, and excellent mechanical stability.
Collapse
Affiliation(s)
- Jun Liu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Junwen Huang
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qipeng Cai
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuxin Yang
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Weiang Luo
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Birong Zeng
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yiting Xu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Conghui Yuan
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Lizong Dai
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
28
|
Chen Q, Zuo X, Liang H, Zhu T, Zhong Y, Liu J, Nan J. A Heat-Resistant Poly(oxyphenylene benzimidazole)/Ethyl Cellulose Blended Polymer Membrane for Highly Safe Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:637-645. [PMID: 31825197 DOI: 10.1021/acsami.9b17374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A blended membrane based on poly(oxyphenylene benzimidazole) (PBI) and ethyl cellulose (EC) exhibits heat resistance and good electrochemical performance. The prepared blended polymer gel membranes show no visible dimensional change after being held at 350 °C for 30 min, whereas the polyethylene (PE) separator almost completely melts. In addition to excellent thermal stability, the self-supporting blended membranes also exhibit a uniform thermal distribution during the heating process from 60 to 200 °C. Additionally, the ionic conductivities of the PBI/EC blended membranes with different ratios are 1.24 mS cm-1 (1:1), 2.58 mS cm-1 (1:2), and 1.68 mS cm-1 (1:3), which are much higher than those of the PE separator (0.39 mS cm-1). Compared to that of the PE separator (113 mAh g-1), the cell with a separator of PBI/EC = 1:2 retained a discharge capacity of 131 mAh g-1 after 150 cycles at 0.5C. Meanwhile, the rate performance of the cell was also better than that of the PE separator, especially at high currents (5C). All of the results indicate that this blended polymer gel membrane with good thermal stability is expected to be applied to high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Qiuyu Chen
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Xiaoxi Zuo
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Huiying Liang
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Tianming Zhu
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Yaotang Zhong
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| | - Jiansheng Liu
- Guangzhou Great Power Energy Technology Co., Ltd. , Guangzhou 511483 , P. R. China
| | - Junmin Nan
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage , South China Normal University , Guangzhou 510006 , P. R. China
| |
Collapse
|
29
|
Functional composite polymer electrolytes with imidazole modified SiO2 nanoparticles for high-voltage cathode lithium ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Yao W, Zhang Q, Qi F, Zhang J, Liu K, Li J, Chen W, Du Y, Jin Y, Liang Y, Liu N. Epoxy containing solid polymer electrolyte for lithium ion battery. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Waqas M, Ali S, Feng C, Chen D, Han J, He W. Recent Development in Separators for High-Temperature Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901689. [PMID: 31116914 DOI: 10.1002/smll.201901689] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Lithium-ion batteries (LIBs) are promising energy storage devices for integrating renewable resources and high power applications, owing to their high energy density, light weight, high flexibility, slow self-discharge rate, high rate charging capability, and long battery life. LIBs work efficiently at ambient temperatures, however, at high-temperatures, they cause serious issues due to the thermal fluctuation inside batteries during operation. The separator is a key component of batteries and is crucial for the sustainability of LIBs at high-temperatures. The high thermal stability with minimum thermal shrinkage and robust mechanical strength are the prime requirements along with high porosity, ionic conductivity, and electrolyte uptake for highly efficient high-temperature LIBs. This Review deals with the recent studies and developments in separator technologies for high-temperature LIBs with respect to their structural layered formation. The recent progress in monolayer and multilayer separators along with the developed preparation methodologies is discussed in detail. Future challenges and directions toward the advancement in separator technology are also discussed for achieving remarkable performance of separators in a high-temperature environment.
Collapse
Affiliation(s)
- Muhammad Waqas
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
- Department of Electrical Engineering, Sukkur IBA University, Sukkur, 65200, Pakistan
| | - Shamshad Ali
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Chao Feng
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Dongjiang Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Weidong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| |
Collapse
|
32
|
Xia T, Wang Y, Wang B, Yang Z, Pan G, Zhang L, Zhang J. Natural Compounds Gallic Acid Derivatives for Long‐Life Li/Na Organic Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201901064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianlai Xia
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Yingqian Wang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Binshen Wang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Zhixiong Yang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Guangxing Pan
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Ling Zhang
- School of ScienceHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| |
Collapse
|
33
|
Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|