1
|
Guo Y, Guo B, Liu Z, Li J, Gao L, Jiang H, Wang J. A photoelectrochemical cytosensor based on a Bi 2S 3-MoS 2 heterojunction-modified reduced oxide graphene honeycomb film for sensitive detection of circulating tumor cells. Biomater Sci 2024; 12:1529-1535. [PMID: 38298092 DOI: 10.1039/d3bm02010j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A novel photoelectrochemical (PEC) cytosensor for the ultrasensitive detection of circulating tumor cells (CTCs) was developed. The bio-inspired reduced graphene oxide (rGO) honeycomb film photoelectrode was fabricated via a "breath figure" method, followed by the self-assembly of a Bi2S3-MoS2 heterojunction. The resulting Bi2S3-MoS2 heterojunction-modified rGO honeycomb film was employed as a sensing matrix for the first time. Compared to the smooth rGO film, the significant enhanced photocurrent of the photoelectrode under visible light was attributed to its improved visible light absorption, increased surface area and enhanced separation efficiency of photo-generated electron-hole pairs, which met the requirements of the PEC sensor for detecting larger targets. By virtue of the photocurrent decrease due to the steric hindrance of MCF-7 cells, which were captured by an aptamer immobilized on the surface of the photoelectrode, a cytosensor for detecting CTCs was achieved, showing a wide linear range of 10-1 × 105 cells per mL and a low detection limit of 2 cells per mL. Furthermore, MCF-7 cells in human serum were determined by this PEC biosensor, exhibiting great potential in the clinical detection of CTCs.
Collapse
Affiliation(s)
- Yuhong Guo
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Binbin Guo
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Zhaopeng Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Jian Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Liming Gao
- The First Hospital in Qinhuangdao, Qinhuangdao 066004, China
| | - Hong Jiang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Jidong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Nanoporous gold microelectrode arrays using microchips: A highly sensitive and cost-effective platform for electroanalytical applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Xu F, Tang H, Yu J, Ge J. A Cu 2+-assisted fluorescence switch biosensor for detecting of coenzyme A employing nitrogen-doped carbon dots. Talanta 2020; 224:121838. [PMID: 33379056 DOI: 10.1016/j.talanta.2020.121838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
Abstract
Herein, a simple and sensitive Cu2+-assisted fluorescence switch biosensor for the detection of coenzyme A (CoA) was proposed by employing nitrogen-doped carbon dots (N-CDs). N-CDs were successfully synthesized by sodium alginate and melatonin via pyrolysis. The as-prepared N-CDs were spherical with an average diameter of 2.8 nm and exhibited blue emission (λem = 480 nm, λex = 360 nm) with a high fluorescence quantum yield of 50.2%. The intense blue emission of the N-CDs could be effectively quenched by copper ions through the formation of the N-CDs/Cu2+ complex. With the introduction of CoA, a more stable CoA/Cu2+ complex formed, leading to the fluorescence recovery of N-CDs. Based on this strategy, CoA could be sensitively and selectively detected with a good linear relationship in the range of 0.02-5.00 μM and with a detection limit of 12 nM. In addition, this sensor was applied for CoA detection in human serum samples with satisfactory recovery. The results showed great potential towards advancing applications in CoA-dependent bioresearch.
Collapse
Affiliation(s)
- Fengzhou Xu
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, PR China.
| | - Huaying Tang
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, PR China
| | - Jianhua Yu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jia Ge
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
4
|
Weng Q, Zheng X, Zhang S, Zhu L, Huang Q, Liu P, Li X, Kang J, Han Z. A photoelectrochemical immunosensor based on natural pigment sensitized ZnO for alpha-fetoprotein detection. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Long R, Guo Y, Xie L, Shi S, Xu J, Tong C, Lin Q, Li T. White pepper-derived ratiometric carbon dots for highly selective detection and imaging of coenzyme A. Food Chem 2020; 315:126171. [PMID: 31991253 DOI: 10.1016/j.foodchem.2020.126171] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
A new-style white pepper derived dual-emission carbon dots (CDs) with a quantum yield of 10.4% was designed and facile constructed with one-pot solvothermal method. The green emission (520 nm) had an efficient and special "turn-on" fluorescence sensing of coenzyme A (CoA) with the aid of Cu2+, while red emission (668 nm) barely changed and worked as reference. In the concentration range (0-150 µM), relative fluorescence intensity ratios (F520/F668) showed excellent linear correlation with concentrations of CoA, and detection limit was as low as 8.75 nm. Moreover, the strategy has been successfully applied for label-free detection of CoA in real pig liver samples with good recoveries (93.3-108.0%). Notably, the synthesized CDs had durable fluorescence, low cytotoxicity, and good biocompatibility for cellular imaging, which demonstrated wide and promising applicability for biosensing and bioimaging in the future.
Collapse
Affiliation(s)
- Ruiqing Long
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078 Changsha, PR China.
| | - Lianwu Xie
- College of Sciences, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Shuyun Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; College of Sciences, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Jinju Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Chaoying Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Qinlu Lin
- College of Sciences, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Te Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
6
|
Chen H, Liu X, Li W, Peng Y, Nie Z. Silver coordination complex amplified electrochemiluminescence sensor for sensitive detection of coenzyme A and histone acetyltransferase activity. Biosens Bioelectron 2018; 126:535-542. [PMID: 30481667 DOI: 10.1016/j.bios.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 11/17/2022]
Abstract
A kind of coenzyme A (CoA)-silver coordination complex (CoA-Ag) was in-situ developed and verified to accelerate the electron transferring and electrochemical catalysis of H2O2 decomposition to enhance the cathode ECL intensity of CdTe@CdS QDs. Afterward, a convenient label-free signal-on ECL approach was constructed for CoA detection with excellent specificity. In addition, the unique ECL enhancing phenomenon was also proposed to assay the enzymatic activity of histone acetyltransferases (HAT) and screen relevant inhibitors, exhibiting a promising potential in the practical application of biochemical research, disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Hongjun Chen
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiu Liu
- Key Laboratory of Pesticide Harmless Application, Collaborative Innovation Center for Field Weeds Control (CICFWC) of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi 417000, PR China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Yan Peng
- College of Economics and Management, Hengyang Normal University, Hengyang 421008, PR China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
7
|
Wu Q, Zhang F, Li H, Li Z, Kang Q, Shen D. A ratiometric photoelectrochemical immunosensor based on g-C3N4@TiO2 NTs amplified by signal antibodies–Co3O4 nanoparticle conjugates. Analyst 2018; 143:5030-5037. [DOI: 10.1039/c8an01345d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we report a ratiometric photoelectrochemical (PEC) immunosensor coupled with secondary antibodies–Co3O4 nanoparticle conjugates (Ab2–Co3O4 NPs) for signal amplification.
Collapse
Affiliation(s)
- Qiong Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Fengxia Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Huijuan Li
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- P. R. China
| | - Zhihua Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| |
Collapse
|