1
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
2
|
Ayankojo AG, Reut J, Syritski V. Electrochemically Synthesized MIP Sensors: Applications in Healthcare Diagnostics. BIOSENSORS 2024; 14:71. [PMID: 38391990 PMCID: PMC10886925 DOI: 10.3390/bios14020071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Early-stage detection and diagnosis of diseases is essential to the prompt commencement of treatment regimens, curbing the spread of the disease, and improving human health. Thus, the accurate detection of disease biomarkers through the development of robust, sensitive, and selective diagnostic tools has remained cutting-edge scientific research for decades. Due to their merits of being selective, stable, simple, and having a low preparation cost, molecularly imprinted polymers (MIPs) are increasingly becoming artificial substitutes for natural receptors in the design of state-of-the-art sensing devices. While there are different MIP preparation approaches, electrochemical synthesis presents a unique and outstanding method for chemical sensing applications, allowing the direct formation of the polymer on the transducer as well as simplicity in tuning the film properties, thus accelerating the trend in the design of commercial MIP-based sensors. This review evaluates recent achievements in the applications of electrosynthesized MIP sensors for clinical analysis of disease biomarkers, identifying major trends and highlighting interesting perspectives on the realization of commercial MIP-endowed testing devices for rapid determination of prevailing diseases.
Collapse
Affiliation(s)
| | | | - Vitali Syritski
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; (A.G.A.); (J.R.)
| |
Collapse
|
3
|
Lin R, Lei M, Ding S, Cheng Q, Ma Z, Wang L, Tang Z, Zhou B, Zhou Y. Applications of flexible electronics related to cardiocerebral vascular system. Mater Today Bio 2023; 23:100787. [PMID: 37766895 PMCID: PMC10519834 DOI: 10.1016/j.mtbio.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Ensuring accessible and high-quality healthcare worldwide requires field-deployable and affordable clinical diagnostic tools with high performance. In recent years, flexible electronics with wearable and implantable capabilities have garnered significant attention from researchers, which functioned as vital clinical diagnostic-assisted tools by real-time signal transmission from interested targets in vivo. As the most crucial and complex system of human body, cardiocerebral vascular system together with heart-brain network attracts researchers inputting profuse and indefatigable efforts on proper flexible electronics design and materials selection, trying to overcome the impassable gulf between vivid organisms and rigid inorganic units. This article reviews recent breakthroughs in flexible electronics specifically applied to cardiocerebral vascular system and heart-brain network. Relevant sensor types and working principles, electronics materials selection and treatment methods are expounded. Applications of flexible electronics related to these interested organs and systems are specially highlighted. Through precedent great working studies, we conclude their merits and point out some limitations in this emerging field, thus will help to pave the way for revolutionary flexible electronics and diagnosis assisted tools development.
Collapse
Affiliation(s)
- Runxing Lin
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
4
|
Dhinesh Kumar M, Karthikeyan M, Sharma N, Raju V, Vatsalarani J, Kalivendi SV, Karunakaran C. Molecular imprinting synthetic receptor based sensor for determination of Parkinson's disease biomarker DJ-1. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Shah NS, Thotathil V, Zaidi SA, Sheikh H, Mohamed M, Qureshi A, Sadasivuni KK. Picomolar or beyond Limit of Detection Using Molecularly Imprinted Polymer-Based Electrochemical Sensors: A Review. BIOSENSORS 2022; 12:1107. [PMID: 36551073 PMCID: PMC9775238 DOI: 10.3390/bios12121107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Over the last decades, molecularly imprinted polymers (MIPs) have emerged as selective synthetic receptors that have a selective binding site for specific analytes/target molecules. MIPs are synthetic analogues to the natural biological antigen-antibody system. Owing to the advantages they exhibit, such as high stability, simple synthetic procedure, and cost-effectiveness, MIPs have been widely used as receptors/sensors for the detection and monitoring of a variety of analytes. Moreover, integrating electrochemical sensors with MIPs offers a promising approach and demonstrates greater potential over traditional MIPs. In this review, we have compiled the methods and techniques for the production of MIP-based electrochemical sensors along with the applications of reported MIP sensors for a variety of analytes. A comprehensive in-depth analysis of recent trends reported on picomolar (pM/10-12 M)) and beyond picomolar concentration LOD (≥pM) achieved using MIPs sensors is reported. Finally, we discuss the challenges faced and put forward future perspectives along with our conclusion.
Collapse
Affiliation(s)
- Naheed Sidiq Shah
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Vandana Thotathil
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hanan Sheikh
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maimoona Mohamed
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ahmadyar Qureshi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | | |
Collapse
|
6
|
Shakeel F, Asad M, Zafar F, akhtar N, Ahmad H, Shafiq Z. Bioinspired NC Coated BM‐ZIF for Electrochemical Monitoring of Adrenaline from Blood and Pharmaceutical Samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Farhan Zafar
- COMSATS Institute of Information Technology - Lahore Campus PAKISTAN
| | - Naeem akhtar
- COMSATS University Islamabad - Lahore Campus PAKISTAN
| | | | | |
Collapse
|
7
|
Francisco KCA, Lobato A, Tasić N, Cardoso AA, Gonçalves LM. Determination of 5-hydroxymethylfurfural using an electropolymerized molecularly imprinted polymer in combination with Salle. Talanta 2022; 250:123723. [PMID: 35868148 DOI: 10.1016/j.talanta.2022.123723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 11/28/2022]
Abstract
Coffee, a beverage with a complex chemical composition, is appreciated for the sensory experience of its taste and aroma. The compound 5-(hydroxymethyl)-2-furfural (HMF) is essential for sensory characterization of the beverage, and is also used in the traceability of its production. In this work, a procedure combining salting-out assisted liquid-liquid extraction (SALLE) and an electropolymerized molecularly imprinted polymer (e-MIP) was developed for the detection and quantification of HMF in coffee samples. The sample preparation step using SALLE employed a combination of acetonitrile and phosphate-buffered saline, in a proportion of 70:30 (ACN:PBS), with addition of 0.02 g of NaCl. The new sensor (e-MIP) was prepared by electropolymerization of p-aminobenzoic acid onto a glassy carbon electrode (GCE) using cyclic voltammetry (CV). Analytical determinations were performed by differential pulse voltammetry (DPV). The linear regression correlation coefficient (r2) for the response was 0.9986. The limits of detection and quantification were 0.372 mg L-1 and 1.240 mg L-1, respectively. The repeatability and reproducibility values obtained were 6 and 10%, respectively. The recoveries for three concentration levels were between 97 and 101%. Analyses of different coffee samples showed that the HMF concentrations varied from 261.0 ± 41.0 to 770.2 ± 55.9 mg kg-1 in powdered coffee samples, and from 1510 ± 50 to 4445 ± 278 mg kg-1 in instant coffee samples. The advantages of this procedure, compared to other methods described in the literature, are its simplicity, easy operation, good selectivity and sensitivity, low cost, and minimal use of organic solvents.
Collapse
Affiliation(s)
- Karen C A Francisco
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Alnilan Lobato
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), SP, Brazil
| | - Nikola Tasić
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), SP, Brazil; Department of Materials Science, Institute of Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Arnaldo A Cardoso
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil.
| | - Luís M Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), SP, Brazil.
| |
Collapse
|
8
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
9
|
Gabriunaite I, Valiuniene A, Ramanavicius S, Ramanavicius A. Biosensors Based on Bio-Functionalized Semiconducting Metal Oxides. Crit Rev Anal Chem 2022; 54:549-564. [PMID: 35714203 DOI: 10.1080/10408347.2022.2088226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immobilization of biomaterials is a very important task in the development of biofuel cells and biosensors. Some semiconducting metal-oxide-based supporting materials can be used in these bioelectronics-based devices. In this article, we are reviewing some functionalization methods that are applied for the immobilization of biomaterials. The most significant attention is paid to the immobilization of biomolecules on the surface of semiconducting metal oxides. The improvement of biomaterials immobilization on metal oxides and analytical performance of biosensors by coatings based on conducting polymers, self-assembled monolayers and lipid membranes is discussed.
Collapse
Affiliation(s)
- Inga Gabriunaite
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
| | - Ausra Valiuniene
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Centre for Physical Sciences and Technology, Department of Electrochemical Material Science, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
- Centre for Physical Sciences and Technology, Department of Electrochemical Material Science, Vilnius, Lithuania
| |
Collapse
|
10
|
3D-printed electrochemical platform with multi-purpose carbon black sensing electrodes. Mikrochim Acta 2022; 189:235. [PMID: 35633399 PMCID: PMC9142345 DOI: 10.1007/s00604-022-05323-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
The 3D printing is described of a complete and portable system comprising a batch injection analysis (BIA) cell and an electrochemical platform with eight sensing electrodes. Both BIA and electrochemical cells were printed within 3.4 h using a multimaterial printer equipped with insulating, flexible, and conductive filaments at cost of ca. ~ U$ 1.2 per unit, and their integration was based on a threadable assembling without commercial component requirements. Printed electrodes were exposed to electrochemical/Fenton pre-treatments to improve the sensitivity. Scanning electron microscopy and electrochemical impedance spectroscopy measurements upon printed materials revealed high-fidelity 3D features (90 to 98%) and fast heterogeneous rate constants ((1.5 ± 0.1) × 10−3 cm s−1). Operational parameters of BIA cell were optimized using a redox probe composed of [Fe(CN)6]4−/3− under stirring and the best analytical performance was achieved using a dispensing rate of 9.0 µL s−1 and an injection volume of 2.0 µL. The proof of concept of the printed device for bioanalytical applications was evaluated using adrenaline (ADR) as target analyte and its redox activities were carefully evaluated through different voltammetric techniques upon multiple 3D-printed electrodes. The coupling of BIA system with amperometric detection ensured fast responses with well-defined peak width related to the oxidation of ADR applying a potential of 0.4 V vs Ag. The fully 3D-printed system provided suitable analytical performance in terms of repeatability and reproducibility (RSD ≤ 6%), linear concentration range (5 to 40 µmol L−1; R2 = 0.99), limit of detection (0.61 µmol L−1), and high analytical frequency (494 ± 13 h−1). Lastly, artificial urine samples were spiked with ADR solutions at three different concentration levels and the obtained recovery values ranged from 87 to 118%, thus demonstrating potentiality for biological fluid analysis. Based on the analytical performance, the complete device fully printed through additive manufacturing technology emerges as powerful, inexpensive, and portable tool for electroanalytical applications involving biologically relevant compounds.
Collapse
|
11
|
Zaidi SA, Mohamed M, Deyab N. A simple method for developing efficient room temperature reduced graphene oxide-coated polyurethane sponge and cotton for oil-water separation. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2074862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shabi Abbas Zaidi
- Analytical Chemistry Program, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Maimoona Mohamed
- Analytical Chemistry Program, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Nada Deyab
- Analytical Chemistry Program, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Swift electrochemical sensing of diltiazem employing highly-selective molecularly-imprinted 3-amino-4-hydroxybenzoic acid. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ramanavicius S, Samukaite-Bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J Pharm Biomed Anal 2022; 215:114739. [DOI: 10.1016/j.jpba.2022.114739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
14
|
Ramanavičius S, Morkvėnaitė-Vilkončienė I, Samukaitė-Bubnienė U, Ratautaitė V, Plikusienė I, Viter R, Ramanavičius A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1282. [PMID: 35162027 PMCID: PMC8838766 DOI: 10.3390/s22031282] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
Collapse
Affiliation(s)
- Simonas Ramanavičius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urtė Samukaitė-Bubnienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaitė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Plikusienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
15
|
Cheng M, Gong W, Lu M, Ma J, Lu Z, Li H. Engineering and Application of Pillar[6]arene Functionalized Chiral Surface in Selective Adsorption of
R
‐Adrenaline. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| | - Wen Gong
- Department of Cardiology, The Third People's Hospital of Hubei Province Hospital of Hubei Province Wuhan Hubei 430030 China
| | - Mingxiang Lu
- Department of Forensic Medicine Zhongnan Hospital of Wuhan University No.169 East Lake Road, Wuchang District Wuhan Hubei 430071 China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Chemistry, School of Pharmacy Hubei University of Medicine Shiyan Hubei 442000 China
| | - Zhiyan Lu
- Department of Forensic Medicine Zhongnan Hospital of Wuhan University No.169 East Lake Road, Wuchang District Wuhan Hubei 430071 China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| |
Collapse
|
16
|
Fabrication and theoretical analysis of sodium alpha-olefin sulfonate-anchored carbon paste electrode for the simultaneous detection of adrenaline and paracetamol. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-021-01663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Kaya SI, Cetinkaya A, Ozkan SA. Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the-
Art Electroanalytical Techniques. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200802024629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Currently, nanotechnology and nanomaterials are considered as the most popular and outstanding
research subjects in scientific fields ranging from environmental studies to drug analysis. Carbon nanomaterials such as
carbon nanotubes, graphene, carbon nanofibers etc. and non-carbon nanomaterials such as quantum dots, metal
nanoparticles, nanorods etc. are widely used in electrochemical drug analysis for sensor development. Main aim of drug
analysis with sensors is developing fast, easy to use and sensitive methods. Electroanalytical techniques such as
voltammetry, potentiometry, amperometry etc. which measure electrical parameters such as current or potential in an
electrochemical cell are considered economical, highly sensitive and versatile techniques.
Methods:
Most recent researches and studies about electrochemical analysis of drugs with carbon-based nanomaterials were
analyzed. Books and review articles about this topic were reviewed.
Results:
The most significant carbon-based nanomaterials and electroanalytical techniques were explained in detail. In
addition to this; recent applications of electrochemical techniques with carbon nanomaterials in drug analysis was expressed
comprehensively. Recent researches about electrochemical applications of carbon-based nanomaterials in drug sensing were
given in a table.
Conclusion:
Nanotechnology provides opportunities to create functional materials, devices and systems using
nanomaterials with advantageous features such as high surface area, improved electrode kinetics and higher catalytic
activity. Electrochemistry is widely used in drug analysis for pharmaceutical and medical purposes. Carbon nanomaterials
based electrochemical sensors are one of the most preferred methods for drug analysis with high sensitivity, low cost and
rapid detection.
Collapse
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
18
|
MXene/carbon nanohorns decorated with conductive molecularly imprinted poly(hydroxymethyl-3,4-ethylenedioxythiophene) for voltammetric detection of adrenaline. Mikrochim Acta 2021; 188:420. [PMID: 34782933 DOI: 10.1007/s00604-021-05079-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
A novel molecularly imprinted sensor was developed for the voltammetric determination of adrenaline (AD). MXene/carbon nanohorn (MXene/CNH) composite with good electric conductivity and enormous accessible active sites was firstly introduced as catalytic substrate. Subsequently, molecularly imprinted polymer (MIP) film was fabricated in mixed solutions containing hydroxymethyl-3,4-ethylenedioxythiophene (functional monomer) and AD (template) through electro-polymerization process. A molecularly imprinted sensor was formed after removing the template. The morphology and elemental composition of the prepared composites were studied by scanning electron microscopy and X-ray photoelectron spectroscopy. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical performance of the molecularly imprinted sensors. Under optimized conditions, the designed sensor displays a wide linear range from 1.0 nM to 60.0 μM and a low limit of detection of 0.3 nM. The developed sensor also presents good selectivity, reproducibility and long-term stability, and satisfactory feasibility in practical sample analysis. MXene/carbon nanohorns decorated with conductive molecularly imprinted poly(hydroxymethyl-3,4-ethylenedioxythiophene) was proposed for highly sensitive and selective detection of adrenaline.
Collapse
|
19
|
Joseph T, Thomas T, Thomas J, Thomas N. The effect of different GO reduction strategies on the lower level electrochemical determination of Epinephrine and Serotonin in quaternary mixtures. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Color-coded Adrenaline Assay Based on GNP@MnO2 Core-shell Nanoparticles with Dark-field Microscopy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60110-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Nanocomposite Materials Based on Electrochemically Synthesized Graphene Polymers: Molecular Architecture Strategies for Sensor Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of graphene and its derivatives in the development of electrochemical sensors has been growing in recent decades. Part of this success is due to the excellent characteristics of such materials, such as good electrical and mechanical properties and a large specific surface area. The formation of composites and nanocomposites with these two materials leads to better sensing performance compared to pure graphene and conductive polymers. The increased large specific surface area of the nanocomposites and the synergistic effect between graphene and conducting polymers is responsible for this interesting result. The most widely used methodologies for the synthesis of these materials are still based on chemical routes. However, electrochemical routes have emerged and are gaining space, affording advantages such as low cost and the promising possibility of modulation of the structural characteristics of composites. As a result, application in sensor devices can lead to increased sensitivity and decreased analysis cost. Thus, this review presents the main aspects for the construction of nanomaterials based on graphene oxide and conducting polymers, as well as the recent efforts made to apply this methodology in the development of sensors and biosensors.
Collapse
|
22
|
Gong L, Li S, Yin Z, Li K, Gu J, Wu D, Kong Y. Enantioselective recognition of tryptophan isomers with molecularly imprinted overoxidized polypyrrole/poly(p-aminobenzene sulfonic acid) modified electrode. Chirality 2021; 33:176-183. [PMID: 33567153 DOI: 10.1002/chir.23299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/27/2020] [Accepted: 01/22/2021] [Indexed: 01/11/2023]
Abstract
Poly(p-aminobenzene sulfonic acid) (pABSA) was electrodeposited onto the surface of a glassy carbon electrode (GCE), which was then used for the preconcentration of l-tryptophan (l-Trp) due to the electrostatic and π-π interactions between pABSA and l-Trp. Polypyrrole (PPy) was electrodeposited onto the surface of the l-Trp enriched pABSA, and then the l-Trp templates were removed, resulting in molecularly imprinted PPy/pABSA. To avoid the interference from the oxidation peak of PPy on the following electrochemical chiral recognition of Trp isomers, PPy was overoxidized by cyclic voltammetry (CV). The resultant molecularly imprinted overoxidized PPy (OPPy)/pABSA modified GCE exhibits higher affinity toward l-Trp than d-tryptophan (d-Trp); that is, the oxidation peak current of l-Trp is greatly higher than that of d-Trp at the molecularly imprinted OPPy/pABSA modified GCE.
Collapse
Affiliation(s)
- Ling Gong
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, China
| | - Shan Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhengzhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Kelin Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Jiawei Gu
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Datong Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Yong Kong
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
23
|
Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021; 13:974. [PMID: 33810074 PMCID: PMC8004762 DOI: 10.3390/polym13060974] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent challenges in biomedical diagnostics show that the development of rapid affinity sensors is very important issue. Therefore, in this review we are aiming to outline the most important directions of affinity sensors where polymer-based semiconducting materials are applied. Progress in formation and development of such materials is overviewed and discussed. Some applicability aspects of conducting polymers in the design of affinity sensors are presented. The main attention is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline, polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some other polymers and inorganic materials that are suitable for molecular imprinting technology are also overviewed. Polymerization techniques, which are the most suitable for the development of composite structures suitable for affinity sensors are presented. Analytical signal transduction methods applied in affinity sensors based on polymer-based semiconducting materials are discussed. In this review the most attention is focused on the development and application of molecularly imprinted polymer-based structures, which can replace antibodies, receptors, and many others expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as "stealth coatings" in the future implantable affinity-sensors. Some new perspectives and trends in analytical application of polymer-based semiconducting materials are highlighted.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Jagminas
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
24
|
Grothe RA, Lobato A, Mounssef B, Tasić N, Braga AAC, Maldaner AO, Aldous L, Paixão TRLC, Gonçalves LM. Electroanalytical profiling of cocaine samples by means of an electropolymerized molecularly imprinted polymer using benzocaine as the template molecule. Analyst 2021; 146:1747-1759. [DOI: 10.1039/d0an02274h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cocaine samples were ‘finger-printed’ using e-MIPs, constructed on the surface of portable SPCEs. The SWV data with suitable chemometric analysis provides valuable information about the drugs’ provenience which is crucial to tackle drug traffic.
Collapse
Affiliation(s)
- Renata A. Grothe
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo (USP)
- São Paulo – SP
- Brazil
| | - Alnilan Lobato
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo (USP)
- São Paulo – SP
- Brazil
| | - Bassim Mounssef
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo (USP)
- São Paulo – SP
- Brazil
| | - Nikola Tasić
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo (USP)
- São Paulo – SP
- Brazil
| | - Ataualpa A. C. Braga
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo (USP)
- São Paulo – SP
- Brazil
| | - Adriano O. Maldaner
- Instituto Nacional de Criminalística
- Polícia Federal Brasileira (PFB)
- Asa Sul, Brasília – DF
- Brazil
| | - Leigh Aldous
- Department of Chemistry
- King's College of London
- London
- UK
| | - Thiago R. L. C. Paixão
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo (USP)
- São Paulo – SP
- Brazil
| | - Luís Moreira Gonçalves
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo (USP)
- São Paulo – SP
- Brazil
| |
Collapse
|
25
|
Ramanavicius S, Ramanavicius A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers (Basel) 2020; 13:E49. [PMID: 33375584 PMCID: PMC7795957 DOI: 10.3390/polym13010049] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Fast and sensitive determination of biologically active compounds is very important in biomedical diagnostics, the food and beverage industry, and environmental analysis. In this review, the most promising directions in analytical application of conducting polymers (CPs) are outlined. Up to now polyaniline, polypyrrole, polythiophene, and poly(3,4-ethylenedioxythiophene) are the most frequently used CPs in the design of sensors and biosensors; therefore, in this review, main attention is paid to these conducting polymers. The most popular polymerization methods applied for the formation of conducting polymer layers are discussed. The applicability of polypyrrole-based functional layers in the design of electrochemical biosensors and biofuel cells is highlighted. Some signal transduction mechanisms in CP-based sensors and biosensors are discussed. Biocompatibility-related aspects of some conducting polymers are overviewed and some insights into the application of CP-based coatings for the design of implantable sensors and biofuel cells are addressed. New trends and perspectives in the development of sensors based on CPs and their composites with other materials are discussed.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
26
|
Hussain S, Abbas Zaidi S, Vikraman D, Kim HS, Jung J. Facile preparation of tungsten carbide nanoparticles for an efficient oxalic acid sensor via imprinting. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Elugoke SE, Adekunle AS, Fayemi OE, Akpan ED, Mamba BB, Sherif EM, Ebenso EE. Molecularly imprinted polymers (MIPs) based electrochemical sensors for the determination of catecholamine neurotransmitters – Review. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry Obafemi Awolowo University Ile‐Ife Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Ekemini D. Akpan
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Bhekie B. Mamba
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University Al‐Riyadh Saudi Arabia
- Electrochemistry and Corrosion Laboratory Department of Physical Chemistry National Research Centre Dokki Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
28
|
Güney S, Arslan T, Yanık S, Güney O. An Electrochemical Sensing Platform Based on Graphene Oxide and Molecularly Imprinted Polymer Modified Electrode for Selective Detection of Amoxicillin. ELECTROANAL 2020. [DOI: 10.1002/elan.202060129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sevgi Güney
- Department of Chemistry Istanbul Technical University 34469, Maslak Istanbul Turkey
| | - Taner Arslan
- Department of Chemistry Istanbul Technical University 34469, Maslak Istanbul Turkey
| | - Serhat Yanık
- Department of Metallurgical and Materials Engineering Marmara University, Kadıkoy Istanbul 34722 Turkey
| | - Orhan Güney
- Department of Chemistry Istanbul Technical University 34469, Maslak Istanbul Turkey
| |
Collapse
|
29
|
Hand RA, Piletska E, Bassindale T, Morgan G, Turner N. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst 2020; 145:4716-4736. [PMID: 32500888 DOI: 10.1039/d0an00682c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The problem posed by anti-doping requirements is one of the great analytical challenges; multiple compound detection at low ng ml-1 levels from complex samples, with requirements for exceptional confidence in results. This review surveys the design, synthesis and application of molecularly imprinted polymers (MIPs) in this field, focusing on the templating of androgenous anabolic steroids (AASs), as the most commonly abused substances, but also other WADA prohibited substances. Commentary on the application of these materials in detection, clean-up and sensing is offered, alongside views on the future of imprinting in this field.
Collapse
Affiliation(s)
- Rachel A Hand
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| | - Elena Piletska
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas Bassindale
- Department of Chemistry and Forensic Science, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Geraint Morgan
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Nicholas Turner
- School of Pharmacy, De Montfort University, Leicester, LE2 9BH, UK.
| |
Collapse
|
30
|
Synthesis of enhanced fluorescent graphene quantum dots for catecholamine neurotransmitter sensing. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0507-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Spychalska K, Zając D, Baluta S, Halicka K, Cabaj J. Functional Polymers Structures for (Bio)Sensing Application-A Review. Polymers (Basel) 2020; 12:E1154. [PMID: 32443618 PMCID: PMC7285029 DOI: 10.3390/polym12051154] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
In this review we present polymeric materials for (bio)sensor technology development. We focused on conductive polymers (conjugated microporous polymer, polymer gels), composites, molecularly imprinted polymers and their influence on the design and fabrication of bio(sensors), which in the future could act as lab-on-a-chip (LOC) devices. LOC instruments enable us to perform a wide range of analysis away from the stationary laboratory. Characterized polymeric species represent promising candidates in biosensor or sensor technology for LOC development, not only for manufacturing these devices, but also as a surface for biologically active materials' immobilization. The presence of biological compounds can improve the sensitivity and selectivity of analytical tools, which in the case of medical diagnostics is extremely important. The described materials are biocompatible, cost-effective, flexible and are an excellent platform for the anchoring of specific compounds.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, 50-137 Wrocław, Poland; (K.S.); (D.Z.); (S.B.); (K.H.)
| |
Collapse
|
32
|
Meng T, Nsabimana A, Zeng T, Jia H, An S, Wang H, Zhang Y. Preparation of Pt anchored on cerium oxide and ordered mesoporous carbon tri-component composite for electrocatalytic oxidation of adrenaline. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110747. [DOI: 10.1016/j.msec.2020.110747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/07/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
|
33
|
|
34
|
Abstract
Microbial contaminations and infections are hazardous and pose crucial concerns for humans. They result in severe morbidity and mortality around the globe. Even though dish-culturing, polymerase chain reaction (PCR), an enzyme-linked immunosorbent assay (ELISA) exhibits accurate and reliable detection of bacteria but these methods are time-consuming, laborious, and expensive. This warrants early detection and quantification of bacteria for timely diagnosis and treatment. Bacteria imprinting ensures a solution for selective and early detection of bacteria by snagging them inside their imprinted cavities. This review provides an insight into MIPs based bacterial detection strategies, challenges, and future perspectives.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
35
|
Improved chiral electrochemical recognition of tryptophan enantiomers based on three‐dimensional molecularly imprinted overoxidized polypyrrole/MnO
2
/carbon felt composites. Chirality 2019; 31:917-922. [DOI: 10.1002/chir.23126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/25/2019] [Accepted: 08/04/2019] [Indexed: 12/25/2022]
|
36
|
Dhanjai, Yu N, Mugo SM. A flexible-imprinted capacitive sensor for rapid detection of adrenaline. Talanta 2019; 204:602-606. [PMID: 31357341 DOI: 10.1016/j.talanta.2019.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/13/2023]
Abstract
This article demonstrates a non-enzymatic biomimetic adrenaline capacitive sensor fabricated inexpensively by layer-by-layer (LbL) assembly. The LbL assembly consists of polydimethylsiloxane (PDMS) substrate, carbon nanotube-cellulose nanocrystals (CNC/CNT) nanofilms (first layer) with adrenaline imprinted poly (aniline/phenylboronic acid) (pANI/PBA) moieties (second layer). The flexible sensor has been effectively demonstrated for high sensitivity and selectivity in capacitive detection of adrenaline standard and adrenaline in real zebra fish brain sample. The molecularly imprinted adrenaline sensor exhibited linear response between 0.001 μM and 100 μM with a correlation coefficient of 0.9738 and detection limit (LOD) of 0.001 μM. The developed sensor demonstrated high adrenaline selectivity and good sensor to sensor reproducibility of 15.7% for molecularly imprinted films. The sensor precision for triplicate standard runs for different adrenaline concentrations ranged from 0.5 to 5.0%, indicative of the overall reliability and validity of the device. The inexpensive sensor remains stable over time, responding proportionately to doses of adrenaline, and as such effective as a dosimetric sensor for near real time continuous monitoring. Frugal in sample consumption (50 μL), the study suggested the practical utilization of the developed biosensor towards adrenaline detection in biological fluids.
Collapse
Affiliation(s)
- Dhanjai
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada; Department of Mathematical and Physical Sciences, Concordia University of Edmonton, 7128 Ada Blvd NW, Edmonton, AB, T5B 4E4, Canada
| | - Nancy Yu
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada
| | - Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| |
Collapse
|
37
|
Hussain S, Zaidi SA, Vikraman D, Kim HS, Jung J. Facile preparation of molybdenum carbide (Mo 2C) nanoparticles and its effective utilization in electrochemical sensing of folic acid via imprinting. Biosens Bioelectron 2019; 140:111330. [PMID: 31150981 DOI: 10.1016/j.bios.2019.111330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022]
Abstract
Herein, we propose a facile chemical reduction method to synthesize the molybdenum carbide (Mo2C) nanoparticles and its application for the electrochemical detection of folic acid (FA) through imprinting technique. Raman scattering, photoelectron spectroscopy and electron microscopy techniques were employed to study the properties of Mo2C nanoparticles. FA imprinting was carried out in the presence of pyrrole monomer over Mo2C modified glassy carbon electrode (GCE). The proposed sensor showed the detection behavior for wide range of FA concentrations from 0.01 μM to 120 μM with an excellent LOD value of 4 nM and good selectivity toward FA as compared to other co-existing species in real samples. The fabricated MIP-Mo2C/GCE sensors were able to be replicated with ∼1.9% RSD, and their reproduced sensor offered good repeatability (RSD; 1.6%) and stability.
Collapse
Affiliation(s)
- Sajjad Hussain
- Graphene Research Institute, Sejong University, Seoul, 05006, Republic of Korea; Department of Nano and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Shabi Abbas Zaidi
- Department of Chemistry, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Jongwan Jung
- Graphene Research Institute, Sejong University, Seoul, 05006, Republic of Korea; Department of Nano and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
38
|
Zaidi SA. An Account on the Versatility of Dopamine as a Functional Monomer in Molecular Imprinting. ChemistrySelect 2019. [DOI: 10.1002/slct.201901029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shabi Abbas Zaidi
- Department of ChemistryKwangwoon University, 20 Kwangwoon-ro, Nowon-Gu Seoul 01897 Korea
| |
Collapse
|
39
|
Crapnell RD, Hudson A, Foster CW, Eersels K, Grinsven BV, Cleij TJ, Banks CE, Peeters M. Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1204. [PMID: 30857285 PMCID: PMC6427210 DOI: 10.3390/s19051204] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/06/2023]
Abstract
The accurate detection of biological materials has remained at the forefront of scientific research for decades. This includes the detection of molecules, proteins, and bacteria. Biomimetic sensors look to replicate the sensitive and selective mechanisms that are found in biological systems and incorporate these properties into functional sensing platforms. Molecularly imprinted polymers (MIPs) are synthetic receptors that can form high affinity binding sites complementary to the specific analyte of interest. They utilise the shape, size, and functionality to produce sensitive and selective recognition of target analytes. One route of synthesizing MIPs is through electropolymerization, utilising predominantly constant potential methods or cyclic voltammetry. This methodology allows for the formation of a polymer directly onto the surface of a transducer. The thickness, morphology, and topography of the films can be manipulated specifically for each template. Recently, numerous reviews have been published in the production and sensing applications of MIPs; however, there are few reports on the use of electrosynthesized MIPs (eMIPs). The number of publications and citations utilising eMIPs is increasing each year, with a review produced on the topic in 2012. This review will primarily focus on advancements from 2012 in the use of eMIPs in sensing platforms for the detection of biologically relevant materials, including the development of increased polymer layer dimensions for whole bacteria detection and the use of mixed monomer compositions to increase selectivity toward analytes.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Alexander Hudson
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Christopher W Foster
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Kasper Eersels
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Bart van Grinsven
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Thomas J Cleij
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Craig E Banks
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| | - Marloes Peeters
- Faculty of Science & Engineering, Div. of Chemistry & Environmental Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
| |
Collapse
|
40
|
|
41
|
Zaidi SA. Molecular Imprinting Prevents Environmental Contamination and Body Toxicity from Anticancer Drugs: An Update. Crit Rev Anal Chem 2019; 49:324-335. [PMID: 30601038 DOI: 10.1080/10408347.2018.1527207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cancer has been responsible for high morbidity and mortality globally. The treatment of cancer is possible using different kinds of therapies using anticancer drugs if it is diagnosed at the right time. Nevertheless, their appropriate administration for maximum therapeutic effect and their elimination from the patient's body causing environmental problems are two big issues which could be successfully abated using molecular imprinted polymers (MIPs) owing to their unique features. In this review, we have compiled and discussed the works on the determination and controlled release of anticancer drugs based on MIPs. We also highlighted the current challenges and remedies, and the future direction of MIPs in this area.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- a Department of Chemistry , Kwangwoon University , Nowon-Gu , Seoul , Korea
| |
Collapse
|
42
|
Zaidi SA. Effective imprinting of an anticancer drug, 6-thioguanine,viamussel-inspired self-polymerization of dopamine over reduced graphene oxide. Analyst 2019; 144:2345-2352. [DOI: 10.1039/c8an02348d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apart from being a vital catecholamine molecule responsible for the proper functioning of the central nervous system (CNS), hormonal and renal systems, dopamine (DA) has also been increasingly employed as a functional monomer in the fabrication of surface molecular imprinting polymers (MIPs) for valuable analytes.
Collapse
|
43
|
Shankar SS, Shereema RM, Rakhi RB. Electrochemical Determination of Adrenaline Using MXene/Graphite Composite Paste Electrodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43343-43351. [PMID: 30465433 DOI: 10.1021/acsami.8b11741] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
MXene/graphite composite paste electrode (MXene/GCPE)-based electrochemical sensor has been fabricated for the detection of adrenaline. The electrode exhibits a sensitive response to adrenaline in phosphate buffer solution of pH 7.4, and its catalytic activity is much higher than that of the bare graphite paste electrode. The electron-transfer reaction of MXene/GCPE is a diffusion controlled process. The graph of concentration of adrenaline with the peak current exhibits two linearities, one in the lower and other in the higher concentration range with a detection limit of 9.5 nM. The simultaneous analyses of adrenaline, ascorbic acid, and serotonin reveal that the fabricated electrode could separate the overlapped cyclic voltammetric peaks of these ternary mixtures. This electrode has been further employed in the detection of adrenaline in pharmaceutical samples with 99.2-100.8% recoveries.
Collapse
Affiliation(s)
- S Sharath Shankar
- Chemical Sciences and Technology Division , CSIR-National Institute of Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram , Kerala 695019 , India
- Department of Biochemistry and Molecular Biology, School of Biological Sciences , Central University of Kerala , Kasargod 671314 , India
| | - Rayammarakkar M Shereema
- Chemical Sciences and Technology Division , CSIR-National Institute of Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram , Kerala 695019 , India
| | - R B Rakhi
- Chemical Sciences and Technology Division , CSIR-National Institute of Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram , Kerala 695019 , India
| |
Collapse
|
44
|
Huang X, Wei S, Yao S, Zhang H, He C, Cao J. Development of molecularly imprinted electrochemical sensor with reduced graphene oxide and titanium dioxide enhanced performance for the detection of toltrazuril in chicken muscle and egg. J Pharm Biomed Anal 2018; 164:607-614. [PMID: 30469110 DOI: 10.1016/j.jpba.2018.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022]
Abstract
A molecularly imprinted electrochemical sensor for toltrazuril (TZR) detection based on molecularly imprinted polymers (MIPs) immobilized on reduced graphene oxide (rGO) and titanium dioxide (TiO2) modified platinum (Pt) electrode surface was fabricated for the first time. The synergistic fast electron transfer ability, large electroactive surface area and high catalytic activity from rGO and TiO2 contribute to amplify the electrochemical signal and consequently improve the sensitivity of the sensor. The cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) tests were used to evaluate the performance of the electrochemical sensor. The results showed that the electrochemical sensor possessed high sensitivity, good selectivity and anti-interference ability toward TZR. By using the DPV, the electrochemical sensor displayed a wide linear concentration range from 0.43 to 42.54 μg/L, with a limit of detection of 0.21 μg/L (S/N = 3). Moreover, the recoveries and relative standard deviations (RSD) were 85.0%-97.0% and 3.5%-6.4% at three concentration levels, respectively, implying that the established sensor is promising for the accurate detection of TZR at trace levels in chicken muscle and egg samples.
Collapse
Affiliation(s)
- Xiangjin Huang
- Zhaoqing Institute for Food Control, Zhaoqing, 526060, China
| | - Shoulian Wei
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Su Yao
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Huasheng Zhang
- Zhaoqing Institute for Food Control, Zhaoqing, 526060, China
| | - Chunlin He
- Zhaoqing Institute for Food Control, Zhaoqing, 526060, China
| | - Jiangfei Cao
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| |
Collapse
|
45
|
He B. Sandwich electrochemical thrombin assay using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles. Mikrochim Acta 2018; 185:344. [DOI: 10.1007/s00604-018-2872-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
|