1
|
Laroui A, Kwaczyński K, Dąbrzalska M, Glazer P, Poltorak L. Magnetic particles (Fe 3O 4) magnify ion transfer processes at the electrified liquid-liquid interface. Case study: Levamisole detection. Talanta 2025; 286:127439. [PMID: 39742846 DOI: 10.1016/j.talanta.2024.127439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
This article describes the effect of non-stabilized magnetic particles Fe3O4 (nanoparticles aggregates) addition to the aqueous phase of the polarized liquid-liquid interface (LLI) on the interfacial ion transfer processes. LLI was formed between 1,2-dichloroethane and water solutions (1,2 DCE)|water. The synthesis of Fe3O4 magnetic particles (MPs) was achieved by the co-precipitation method, after which their appearance, size of aggregates, and zeta potential were assessed. All electrochemical measurements reported in this study were performed using cyclic voltammetry (CV). We evaluated the effect of pH and the presence of different concentrations of magnetic Fe3O4 nanoparticles aggregates always initially added to the aqueous phase on tetramethylammonium cation (TMA+), and 4-octylbenzenesulfonic acid (OBS-) ion transfer. We have found that the addition of Fe3O4 MPs followed by their precipitation and LLI interface modification leads to pH dependent magnification of the recorded ionic currents attributed to the cation and anion transfer from the aqueous to the organic phase and vice versa. As such, we have plotted the calibration curves of TMA+ and OBS- in the concentration range of (10-200 μM) revealing that Fe3O4 MPs have a significant effect on detection sensitivity, which is dependent on the interaction between Fe3O4 MPs and the analyte being studied. Finally, we assessed the electrochemical behavior of levamisole at the 1,2-dichloroethane|water interface in the presence and absence of Fe3O4 MPs.
Collapse
Affiliation(s)
- Abdelatif Laroui
- University of Lodz, Doctoral School of Exact and Natural Science, Jana Matejki 21/23, 90-237 Lodz, Poland; University of Lodz, Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Karolina Kwaczyński
- University of Lodz, Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Monika Dąbrzalska
- University of Lodz, Department of General Biophysics, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Piotr Glazer
- Łukasiewicz Research Network - Poznań Institute of Technology, Chemical Technology and Environmental Protection Group, E. Estkowskiego 6, 61-755, Poznań, Poland
| | - Lukasz Poltorak
- University of Lodz, Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
2
|
Betancourt SNM, Riva JS. Opposite effects produced by Magnetic Nanoparticles:Phospholipid films generated at a liquid/liquid interface, in the drug transfer processes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
3
|
Jetmore HD, Anupriya ES, Cress TJ, Shen M. Interface between Two Immiscible Electrolyte Solutions Electrodes for Chemical Analysis. Anal Chem 2022; 94:16519-16527. [DOI: 10.1021/acs.analchem.2c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Henry David Jetmore
- University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| | | | - Tanner Joe Cress
- University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| | - Mei Shen
- University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
4
|
Moya Betancourt SN, Uranga JG, Juarez AV, Cámara CI, Pozo López G, Riva JS. Effect of bare and polymeric-modified magnetic nanoparticles on the drug ion transfer across liquid/liquid interfaces. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Kowalewska K, Sipa K, Kaczmarek K, Skrzypek S, Poltorak L. Interfacial Synthesis of Nylon‐6.6 and Its Modification with Silver‐Based Nanoparticles at the Electrified Liquid‐Liquid Interface. ChemElectroChem 2022. [DOI: 10.1002/celc.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Karolina Sipa
- University of Lodz: Uniwersytet Lodzki Faculty of Chemistry POLAND
| | | | | | - Lukasz Poltorak
- Uniwersytet Lodzki Faculty of Chemistry Tamka 12 90-403 Lodz POLAND
| |
Collapse
|
6
|
Moya Betancourt SN, Cámara CI, Juarez AV, Pozo López G, Riva JS. Effect of magnetic nanoparticles coating on their electrochemical behaviour at a polarized liquid/liquid interface. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Keane RK, Hong W, He W, Teale S, Bancroft R, Dinsmore AD. Adsorption of Hydrophilic Silica Nanoparticles at Oil-Water Interfaces with Reversible Emulsion Stabilization by Ion Partitioning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2821-2831. [PMID: 35188775 DOI: 10.1021/acs.langmuir.1c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adsorption of particles at oil-water interfaces is the basis of Pickering emulsions, which are common in nature and industry. For hydrophilic anionic particles, electrostatic repulsion and the absence of wetting inhibit spontaneous adsorption and limit the scope of materials that can be used in emulsion-based applications. Here, we explore how adding ions that selectively partition in the two fluid phases changes the interfacial electric potential and drives particle adsorption. We add oil-soluble tetrabutyl ammonium perchlorate (TBAP) to the nonpolar phase and Ludox silica nanoparticles or silica microparticles to the aqueous phase. We find a well-defined threshold TBAP concentration, above which emulsions are stable for months. This threshold increases with the particle concentration and with the oil's dielectric constant. Adding NaClO4 salt to water increases the threshold and causes spontaneous particle desorption and droplet coalescence even without agitation. The results are explained by a model based on the Poisson-Boltzmann theory, which predicts that the perchlorate anions (ClO4-) migrate into the water phase and leave behind a net positive charge in the oil. Our results show how a large class of inorganic hydrophilic, anionic nanoparticles can be used to stabilize emulsions in a reversible and stimulus-responsive way, without surface modifications.
Collapse
Affiliation(s)
- Robert K Keane
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Wei Hong
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Wei He
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Sam Teale
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Robbie Bancroft
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Anthony D Dinsmore
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Al Nasser HA, Bissett MA, Dryfe RAW. The Modified Liquid‐Liquid Interface: The Effect of an Interfacial Layer of MoS
2
on Ion Transfer. ChemElectroChem 2021. [DOI: 10.1002/celc.202100820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hussain A. Al Nasser
- Department of Chemistry The University of Manchester Oxford Road Manchester U.K. M13 9PL
| | - Mark A. Bissett
- Department of Materials The University of Manchester Oxford Road Manchester U.K. M13 9PL
- Henry Royce Institute The University of Manchester Oxford Road Manchester U.K. M13 9PL
| | - Robert A. W. Dryfe
- Department of Chemistry The University of Manchester Oxford Road Manchester U.K. M13 9PL
- Henry Royce Institute The University of Manchester Oxford Road Manchester U.K. M13 9PL
| |
Collapse
|
9
|
Qiu H, Jiang T, Wang X, Zhu L, Wang Q, Zhao Y, Ge J, Chen Y. Electrochemical investigation of adsorption of graphene oxide at an interface between two immiscible electrolyte solutions. RSC Adv 2020; 10:25817-25827. [PMID: 35518605 PMCID: PMC9055337 DOI: 10.1039/d0ra02560g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 01/18/2023] Open
Abstract
Graphene oxide (GO) has been recognized as an amphiphilic molecule or a soft colloidal particle with the ability to adsorb and assemble at the liquid/liquid (L/L) interface. However, most extant works concerning the adsorption behaviors of GO at the L/L interface have been limited to the non-polarized L/L interface. Here, we studied what would happen if GO nanosheets met with a polarizable L/L interface, namely an interface between two immiscible electrolyte solutions (ITIES). On one hand, the adsorption behavior of GO nanosheets at the L/L interface was electrochemically investigated firstly by using cyclic voltammetry (CV) and alternating current voltammetry (ACV). On the other hand, the influence of the adsorbed GO layers at the L/L interface on the ion transfer reactions was studied by employing ion-transfer voltammetry of TEA+ and ClO4− selected as probe ions. Capacitance measurements show that the interfacial capacitance increases greatly in the presence of GO nanosheets inside the aqueous phase, which can be attributed to the increases of interfacial corrugation and charge density induced by the parallel adsorption and assembly of GO at the L/L interface. In addition, it is found that the application of an interfacial potential difference by external polarization can promote the adsorption of GO at the L/L interface. Moreover, the ion-transfer voltammetric results further demonstrate that the GO layers formed at the interface can suppress the ion transfer reactions due to interfacial blocking and charge screening, as well as the hindrance effect induced by the GO layers. All the results with insights into the interfacial behavior of GO under polarization with an external electric field enable understanding the adsorption behavior of GO at the L/L interface more comprehensively. The adsorption behavior of graphene oxide (GO) nanosheets at an interface between two immiscible electrolyte solutions (ITIES) was electrochemically investigated firstly by using cyclic voltammetry (CV) and alternating current voltammetry (ACV).![]()
Collapse
Affiliation(s)
- Haiyan Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Tao Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Xiaoyuan Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Lin Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Qingwei Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Yun Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Jianjian Ge
- School of Science, Shanghai Institute of Technology Shanghai 201418 China
| | - Yong Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
10
|
|