1
|
Ma H, Yi M, Messinger M, Wang G. Kinetics-Based Ratiometric Electrochemiluminescence Analysis for Signal Specificity: Case Studies of Piperazine Drug Discrimination with Au Nanoclusters. Anal Chem 2022; 94:11760-11766. [PMID: 35973062 DOI: 10.1021/acs.analchem.2c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multi-parameter calibration and analysis strategy has been developed based on the kinetics of charge transfer reactions. Absolute and ratiometric electrochemiluminescence signals are elucidated from single measurements for the detection of hydroxyzine and cetirizine as prototype drugs which greatly enhance the near-infrared electrochemiluminescence from atomically precise Au22 nanoclusters stabilized with lipoic acid ligands on ITO electrodes. The signal-on sensing mechanism eliminates the need for recognition elements and highly excess co-reactants in conventional electrochemiluminescence practice. The rates of sequential charge transfer reactions render specificity in electrochemiluminescence intensity and kinetics toward the target molecular/electronic structures and are conveniently controlled/optimized by operation parameters. Signal kinetic profiles, in stark contrast to steady-state or single-point recordings, not only improve the signal/noise ratio but also offer greater resolving power to differentiate analogue species and nonspecific interference. The fundamental kinetics-based ratiometric concept/strategy is not limited to a specific luminophore or a co-reactant and is thus generalizable. The case studies successfully detect and discriminate drug compounds at sub-nanomolar physiological ranges, with efficacy validated using synthetic urine toward point-of-care applications in therapeutic/abuse drug monitoring.
Collapse
Affiliation(s)
- Hedi Ma
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Meijun Yi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Michael Messinger
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
2
|
Cao Y, Zhou JL, Ma Y, Zhou Y, Zhu JJ. Recent progress of metal nanoclusters in electrochemiluminescence. Dalton Trans 2022; 51:8927-8937. [PMID: 35593102 DOI: 10.1039/d2dt00810f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal nanoclusters (MeNCs), composed of a few to hundreds of metal atoms and appropriate surface ligands, have attracted extensive interest in the electrochemiluminescence (ECL) realm owing to their molecule-like optical, electronic, and physicochemical attributes and are strongly anticipated for discrete energy levels, fascinating electrocatalytic activity, and good biocompatibility. Over the past decade, huge efforts have been devoted to the synthesis, properties, and application research of ECL-related MeNCs, and this field is still a subject of heightened concern. Therefore, this perspective aims to provide a comprehensive overview of the recent advances of MeNCs in the ECL domain, mainly covering the emerged ECL available MeNCs, unique chemical and optical properties, and the general ECL mechanisms. Synthesis strategies for desirable ECL performance are further highlighted, and the resulting ECL sensing applications utilizing MeNCs as luminophores, quenchers, and substrates are discussed systematically. Finally, we anticipate the future prospects and challenges in the development of this area.
Collapse
Affiliation(s)
- Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Jia-Lin Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yanwen Ma
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210046, PR China.
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210046, PR China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Han S, Zhao Y, Zhang Z, Xu G. Recent Advances in Electrochemiluminescence and Chemiluminescence of Metal Nanoclusters. Molecules 2020; 25:molecules25215208. [PMID: 33182342 PMCID: PMC7664927 DOI: 10.3390/molecules25215208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Metal nanoclusters (NCs), including Au, Ag, Cu, Pt, Ni and alloy NCs, have become more and more popular sensor probes with good solubility, biocompatibility, size-dependent luminescence and catalysis. The development of electrochemiluminescent (ECL) and chemiluminescent (CL) analytical methods based on various metal NCs have become research hotspots. To improve ECL and CL performances, many strategies are proposed, from metal core to ligand, from intermolecular electron transfer to intramolecular electron transfer. Combined with a variety of amplification technology, i.e., nanostructure-based enhancement and biological signal amplification, highly sensitive ECL and CL analytical methods are developed. We have summarized the research progresses since 2016. Also, we discuss the current challenges and perspectives on the development of this area.
Collapse
Affiliation(s)
- Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Yuhui Zhao
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
- Correspondence: (Z.Z.); (G.X.)
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Correspondence: (Z.Z.); (G.X.)
| |
Collapse
|
4
|
Lei Y, Qiu F, Jin XY, Yang JM, Liu M, Ge QM, Cong H, Tao Z. A high-sensitive sensor with HEPES-enhanced electrochemiluminescence of benzo[3]uril for Fe 3+ and its application in human serum. Analyst 2020; 145:1810-1816. [PMID: 31951229 DOI: 10.1039/c9an02156f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An electrochemiluminescence (ECL) sensor based on a benzo[3]uril-modified glassy carbon electrode with sensitized luminescence, with the coexistence of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as the coreactant, was successfully constructed. The sensitization mechanism was proposed by analyzing the results of the control experiments for establishing the relationship of the luminescence effect with the concentration of HEPES. Under the optimized conditions, the fabricated sensor system was applied for the detection of Fe3+ in an aqueous solution with good sensitivity and selectivity. A low detection limit of 0.41 nM was achieved, indicating superior sensor performance over the previous analytical methods. The ECL sensor system was employed for the detection of Fe3+ in human serum samples to produce excellent recoveries ranging from 96.17% to 101.81%.
Collapse
Affiliation(s)
- Yao Lei
- Key laboratory of macrocyclic and supramolecular chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Red-shifted electrochemiluminescence of CdTe nanocrystals via Co2+-Doping and its spectral sensing application in near-infrared region. Biosens Bioelectron 2020; 150:111880. [DOI: 10.1016/j.bios.2019.111880] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022]
|
6
|
Dong X, Zhao G, Li X, Miao J, Fang J, Wei Q, Cao W. Electrochemiluminescence immunoassay for the N-terminal pro-B-type natriuretic peptide based on resonance energy transfer between a self-enhanced luminophore composed of silver nanocubes on gold nanoparticles and a metal-organic framework of type MIL-125. Mikrochim Acta 2019; 186:811. [PMID: 31745662 DOI: 10.1007/s00604-019-3969-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
The N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a marker of heart failure. A novel sandwich type electrochemiluminescence (ECL) immunoassay is described for the NT-proBNP. The method is based on ECL resonance energy transfer (RET) between silver nanocubes that were covered with semicarbazide-modified gold nanoparticles (AgNC-sem@AuNPs) as the donor, and a Ti(IV)-based metal-organic framework of type MIL-125 as the acceptor. The ECL signal was strongly amplified by increasing the luminous efficiency. ECL-RET occurs due to the partial overlap between the ECL emission of the AgNC-sem@AuNPs (emission wavelength at 470 nm to 900 nm) and the visible absorption spectrum of MIL-125 (absorption wavelength at 406 nm to 900 nm). This results in the quenching of ECL. The AgNC-sem@AuNPs were placed on the electrode. The antibody was immobilized on AgNC-sem@AuNPs via Au-NH2 bond, and MIL-125 was utilized as a label for the secondary antibody. The assay works in the 0.25 pg mL-1 to 100 ng mL-1 concentration range and has a 0.11 pg mL-1 lower detection limit (at S/N = 3). Graphical abstract Schematic representation of self-enhanced luminescence mechanism (semicarbazide (Sem) as co-reaction accelerator) and Electrochemiluminescence resonance energy transfer (ECL-RET): silver nanocubes (AgNCs) as the energy donor and MIL-125 as the energy acceptor.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xuan Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - JunCong Miao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
7
|
Chen S, Ma H, Padelford JW, Qinchen W, Yu W, Wang S, Zhu M, Wang G. Near Infrared Electrochemiluminescence of Rod-Shape 25-Atom AuAg Nanoclusters That Is Hundreds-Fold Stronger Than That of Ru(bpy)3 Standard. J Am Chem Soc 2019; 141:9603-9609. [DOI: 10.1021/jacs.9b02547] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hedi Ma
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Jonathan W. Padelford
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Wanli Qinchen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Wei Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
8
|
Yuan Q, Kang X, Hu D, Qin C, Wang S, Zhu M. Metal synergistic effect on cluster optical properties: based on Ag25 series nanoclusters. Dalton Trans 2019; 48:13190-13196. [DOI: 10.1039/c9dt02493j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We found that the PL intensity of Ag series nanocluster could be controlled by the contraction/expansion of the free valence electrons.
Collapse
Affiliation(s)
- Qianqin Yuan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
- China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
- China
| | - Daqiao Hu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
- China
| | - Chenwanli Qin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
- China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
- China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
- China
| |
Collapse
|