1
|
Hernandez S, Wonner K, Hosseini P, Cignoni P, Heras A, Colina A, Tschulik K. The Role of Chloride in Raman Signal Enhancement by Electrochemical Silver Oxidation Revealed by Dark Field Microscopy. Anal Chem 2025; 97:7772-7780. [PMID: 40165621 PMCID: PMC12004349 DOI: 10.1021/acs.analchem.4c05942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/04/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Raman spectroscopy is a widely used technique in several contexts, including chemical analysis, materials characterization, and catalysis. However, to exploit the high capacities of this technique, signal enhancement is needed. For this purpose, several methodologies can be used, and those known as surface enhanced Raman scattering (SERS), or resonance Raman (RR) have been widely used. However, there are some new strategies, such as electrochemical surface oxidation enhanced Raman scattering (EC-SOERS), that require further understanding for optimum exploitation in diverse analytical contexts. In EC-SOERS, the enhancement of the Raman signal is observed during the electrochemical oxidation of silver in the presence of a precipitating agent, but only for specific concentrations of this agent. In this work, we use electrochemical dark-field microscopy (DFM) to explore and reveal the origin of this concentration dependency by monitoring the oxidative formation of EC-SOERS substrates in solutions of different chloride concentrations. These operando studies provide a complete picture of the processes taking place on the electrode surface and at the solution adjacent to it with a high time resolution, showing that the formation of the EC-SOERS substrate requires sufficient Cl- to generate AgCl nanocrystals without blocking the surface and allowing the release of Ag+ cations. Thanks to the gained mechanistic insights, the selection of a suitable precipitation agent concentration can move from a trial and error selection process to a knowledge-based selection, allowing the rational design of different SOERS substrates that will facilitate the efficient application of SOERS in different research contexts.
Collapse
Affiliation(s)
- Sheila Hernandez
- Chair
of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Kevin Wonner
- Chair
of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Pouya Hosseini
- Max-Planck-Institut
für Nachhaltige Materialien GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Paolo Cignoni
- Chair
of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Aranzazu Heras
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Kristina Tschulik
- Chair
of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
- Max-Planck-Institut
für Nachhaltige Materialien GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| |
Collapse
|
2
|
Romay L, Nuñez-Marinero P, Perales-Rondon JV, Heras A, Del Campo FJ, Colina A. New screen-printed electrodes for Raman spectroelectrochemistry. Determination of p-aminosalicylic acid. Anal Chim Acta 2024; 1325:343095. [PMID: 39244301 DOI: 10.1016/j.aca.2024.343095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The availability of new surface enhanced Raman scattering (SERS) substrates is essential to develop quantitative analytical methods. Electrochemistry is an easy, fast and reproducible methodology to prepare SERS substrates on screen-printed electrodes (SPEs). RESULTS This work proposes new SPEs based on a three-electrode system all made of silver. Using the same ink for the whole electrode system facilitates the fabrication process, reduces production costs, and leads to excellent analytical performance. The results showed that Raman enhancement depends strongly on the type of silver ink. To demonstrate the capabilities of the new electrodes developed, 4-aminosalicylic acid was determined in complex matrices and in the presence of strong interfering compounds such as salicylic acid and acetylsalicylic acid. The proposed analytical method is based on the electrochemical surface oxidation enhanced Raman scattering (EC-SOERS) strategy. AgCl nanocrystals are generated on the working electrode surface, which amplify the Raman signal of 4-aminosalicylic acid. Good figures of merit were obtained both in the absence and in the presence of the interfering compounds, achieving a correct estimation of a 4-aminosalicylic test sample in complex matrices. SIGNIFICANCE The new SPEs have been demonstrated to be very sensitive and reproducible which, together to the high specificity of the Raman signal, makes this methodology very attractive for chemical analysis.
Collapse
Affiliation(s)
- Luis Romay
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - Pello Nuñez-Marinero
- BCMaterials, Basque Center for Materials, Applications and Nanostructures. UPV/EHU Parque Científico, E-48940, Leioa, Bizkaia, Spain
| | - Juan V Perales-Rondon
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain; Hydrogen and Power-to-X Department, Iberian Centre for Research in Energy Storage, Polígono 13, Parcela 31, «El Cuartillo», E-10004, Cáceres, Spain
| | - Aranzazu Heras
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - F Javier Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures. UPV/EHU Parque Científico, E-48940, Leioa, Bizkaia, Spain; IKERBASQUE, Fundación Vasca para la Ciencia, E-48009, Bilbao, Spain.
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001, Burgos, Spain.
| |
Collapse
|
3
|
Jiang L, Luo L, Zhang Z, Kang C, Zhao Z, Chen D, Long Y. Rapid detection of Pseudomonas syringae pv. actinidiae by electrochemical surface-enhanced Raman spectroscopy. Talanta 2024; 268:125336. [PMID: 37924805 DOI: 10.1016/j.talanta.2023.125336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Bacterial cancer caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to kiwifruit in the world, and there is still a lack of effective control measures. The field of bacterial detection needs a fast, easy-to-use and sensitive identification platform. The current bacterial identification methods are lack of time efficiency, which brings problems to many sectors of society. Surface-enhanced Raman spectroscopy (SERS) and electrochemistry (EC) have been studied as possible candidates for bacterial detection because of their high sensitivity for the detection of biomolecules. In this work, SERS, EC and electrochemical surface-enhanced Raman spectroscopy (EC-SERS) were used for the first time to study the adsorption and EC behavior of Psa on the surface of nanostructured silver electrodes. Two different Raman spectra of a single analyte were obtained, and this dual detection was realized. Silver nanoparticles with iodide and calcium ions (Ag@ICNPs) were synthesized as SERS substrates significantly enhanced the characteristic signal peaks of Psa, and the limit of detection (LOD) is as low as 1.0 × 102 cfu/mL. Chemical imaging results show that the application of negative voltage can significantly improve the spectrum quality, showing a higher signal at -0.8 V, indicating that Psa molecules may have potential-induced reorientation on the electrode surface. Therefore, EC-SERS has the ability to greatly improve the SERS performance of bacteria in terms of peak intensity and spectral richness.
Collapse
Affiliation(s)
- Lingli Jiang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China
| | - Longhui Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China
| | - Zhuzhu Zhang
- Engineering and Technology Research Center of Kiwifruit, Guizhou University, Guiyang, 550025, China
| | - Chao Kang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China
| | - Zhibo Zhao
- Engineering and Technology Research Center of Kiwifruit, Guizhou University, Guiyang, 550025, China
| | - Dongmei Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China.
| | - Youhua Long
- Engineering and Technology Research Center of Kiwifruit, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Hernandez S, Perez-Estebanez M, Cheuquepan W, Perales-Rondon JV, Heras A, Colina A. Raman, UV-Vis Absorption, and Fluorescence Spectroelectrochemistry for Studying the Enhancement of the Raman Scattering Using Nanocrystals Activated by Metal Cations. Anal Chem 2023; 95:16070-16078. [PMID: 37871281 PMCID: PMC10633809 DOI: 10.1021/acs.analchem.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Raman signal enhancement is fundamental to develop different analytical tools for chemical analysis, interface reaction studies, or new materials characterization, among others. Thus, phenomena such as surface-enhanced Raman scattering (SERS) have been used for decades to increase the sensitivity of Raman spectroscopy, leading to a huge development of this field. Recently, an alternative method to SERS for the amplification of Raman signals has been reported. This method, known as electrochemical surface oxidation-enhanced Raman scattering (EC-SOERS), has been experimentally described. However, to date, it has not yet been fully understood. In this work, new experimental data that clarify the origin of the Raman enhancement in SOERS are provided. The use of a complete and unique set of combined spectroelectrochemistry techniques, including time-resolved operando UV-vis absorption, fluorescence, and Raman spectroelectrochemistry, reveals that such enhancement is related to the generation of dielectric or semiconductor nanocrystals on the surface of the electrode and that the interaction between the target molecule and the dielectric substrate is mediated by metal cations. According to these results, the interaction metal electrode-nanocrystal-metal cation-molecule is proposed as being responsible for the Raman enhancement in Ag and Cu substrates. Elucidation of the origin of the Raman enhancement will help to promote the rational design of SOERS substrates as an attractive alternative to the well-known SERS phenomenon.
Collapse
Affiliation(s)
- Sheila Hernandez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Martin Perez-Estebanez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - William Cheuquepan
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
- Bernal
Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department
of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Juan V. Perales-Rondon
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Aranzazu Heras
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
5
|
Markin AV, Arzhanukhina AI, Markina NE, Goryacheva IY. Analytical performance of electrochemical surface-enhanced Raman spectroscopy: A critical review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Raman spectroelectrochemical determination of clopyralid in tap water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Brasiliense V, Park JE, Berns EJ, Van Duyne RP, Mrksich M. Surface potential modulation as a tool for mitigating challenges in SERS-based microneedle sensors. Sci Rep 2022; 12:15929. [PMID: 36151248 PMCID: PMC9508330 DOI: 10.1038/s41598-022-19942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Raman spectroscopic-based biosensing strategies are often complicated by low signal and the presence of multiple chemical species. While surface-enhanced Raman spectroscopy (SERS) nanostructured platforms are able to deliver high quality signals by focusing the electromagnetic field into a tight plasmonic hot-spot, it is not a generally applicable strategy as it often depends on the specific adsorption of the analyte of interest onto the SERS platform. This paper describes a strategy to address this challenge by using surface potential as a physical binding agent in the context of microneedle sensors. We show that the potential-dependent adsorption of different chemical species allows scrutinization of the contributions of different chemical species to the final spectrum, and that the ability to cyclically adsorb and desorb molecules from the surface enables efficient application of multivariate analysis methods. We demonstrate how the strategy can be used to mitigate potentially confounding phenomena, such as surface reactions, competitive adsorption and the presence of molecules with similar structures. In addition, this decomposition helps evaluate criteria to maximize the signal of one molecule with respect to others, offering new opportunities to enhance the measurement of analytes in the presence of interferants.
Collapse
Affiliation(s)
- Vitor Brasiliense
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA
- PPSM, ENS Paris-Saclay, CNRS (UMR 5831), Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Ji Eun Park
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA
| | - Eric J Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, IL-60208, USA
| | - Richard P Van Duyne
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL-60208, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL-60208, USA.
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL-60611, USA.
| |
Collapse
|
8
|
Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, Tosa N, Muntean CM, Farcău C, Bodoki E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta 2022; 1209:339250. [PMID: 35569862 DOI: 10.1016/j.aca.2021.339250] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
The discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes. EC was found to highly improve the performances of SERS sensors, providing, among others, controlled adsorption of analytes and increased reproducibility. In this review, we highlight the potential of EC-SERS sensors to be implemented for point-of-need (PON) analyses as miniaturized devices, and their ability to revolutionize fields like quality control, diagnosis or environmental and food safety. Important developments have been achieved in Raman spectroelectrochemistry, which now represents a promising alternative to conventional analytical methods and interests more and more researchers. The studies included in this review open endless possibilities for real-life EC-SERS analytical applications.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Elizaveta Vereshchagina
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Karolina Milenko
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Andreea Elena Bodoki
- General and Inorganic Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 12, Ion Creangă, 400010, Cluj-Napoca, Romania
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
9
|
Zacharovas E, Velička M, Platkevičius G, Čekauskas A, Želvys A, Niaura G, Šablinskas V. Toward a SERS Diagnostic Tool for Discrimination between Cancerous and Normal Bladder Tissues via Analysis of the Extracellular Fluid. ACS OMEGA 2022; 7:10539-10549. [PMID: 35382275 PMCID: PMC8973049 DOI: 10.1021/acsomega.2c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 05/09/2023]
Abstract
Vibrational spectroscopy provides the possibility for sensitive and precise detection of chemical changes in biomolecules due to development of cancers. In this work, label-free near-infrared surface enhanced Raman spectroscopy (SERS) was applied for the differentiation between cancerous and normal human bladder tissues via analysis of the extracellular fluid of the tissue. Specific cancer-related SERS marker bands were identified by using a 1064 nm excitation wavelength. The prominent spectral marker band was found to be located near 1052 cm-1 and was assigned to the C-C, C-O, and C-N stretching vibrations of lactic acid and/or cysteine molecules. The correct identification of 80% of samples is achieved with even limited data set and could be further improved. The further development of such a detection method could be implemented in clinical practice for the aid of surgeons in determining of boundaries of malignant tumors during the surgery.
Collapse
Affiliation(s)
- Edvinas Zacharovas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| | - Martynas Velička
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Platkevičius
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Albertas Čekauskas
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Aru̅nas Želvys
- Clinic
of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical
Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio st. 21/27, LT-03101 Vilnius, Lithuania
| | - Gediminas Niaura
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Saulėtekis Avenue 3, LT 10257, Vilnius, Lithuania
| | - Valdas Šablinskas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekis Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
10
|
A novel AIE fluorescent probe for β-galactosidase detection and imaging in living cells. Anal Chim Acta 2022; 1198:339554. [DOI: 10.1016/j.aca.2022.339554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
|
11
|
Mažeikienė R, Niaura G, Malinauskas A. Poly(N-methylaniline) vs. polyaniline: An extended pH range of polaron stability as revealed by Raman spectroelectrochemistry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120140. [PMID: 34252739 DOI: 10.1016/j.saa.2021.120140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
A comparative study of polyaniline (PANI) and poly(N-methylaniline) (PNMA) has been performed by means of Raman spectroelectrochemical technique at 633 nm and 785 nm laser line excitations. The excitation wavelengths used fall into a resonance with the blue colored semi- and full-oxidized forms of these conducting polymers. The dependence of Raman features on electrode potential and solution acidity was studied, and relative content of polaronic and bipolaronic states was evaluated. In an acidic solution, the semioxidized emeraldine form of either PANI or PNMA exists in equilibrium between their polaronic and bipolaronic states. In a neutral or even slightly alkaline solution, this equilibrium for PANI shifts to bipolaron state, resulting in loss of its conductance. For PNMA, however, the relative content of polaron state appears high enough even in pH-neutral soulions, thus determining a higher conductivity of PNMA in pH-neutral environment as compared to that of PANI. A mechanistic interpretation for this, based on differences in the chemical structures of these polymers, is also presented.
Collapse
Affiliation(s)
- Regina Mažeikienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Albertas Malinauskas
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
12
|
Cheuquepan W, Hernandez S, Perez-Estebanez M, Romay L, Heras A, Colina A. Electrochemical generation of surface enhanced Raman scattering substrates for the determination of folic acid. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
Hernandez S, Perales-Rondon JV, Heras A, Colina A. Enhancement factors in electrochemical surface oxidation enhanced Raman scattering. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Granda-Marulanda LP, McCrum IT, Koper MTM. A simple method to calculate solution-phase free energies of charged species in computational electrocatalysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:204001. [PMID: 33761487 DOI: 10.1088/1361-648x/abf19d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Determining the adsorption potential of adsorbed ions in the field of computational electrocatalysis is of great interest to study their interaction with the electrode material and the solvent, and to map out surface phase diagrams and reaction pathways. Calculating the adsorption potentials of ions with density functional theory and comparing across various ions requires an accurate reference energy of the ion in solution and electrons at the same electrochemical scale. Here we highlight a previously used method for determining the reference free energy of solution phase ions using a simple electrochemical thermodynamic cycle, which allows this free energy to be calculated from that of a neutral gas-phase or solid species and an experimentally measured equilibrium potential, avoiding the need to model solvent around the solution phase ion in the electronic structure calculations. While this method is not new, we describe its use and utility in detail and show that this same method can be used to find the free energy of any ion from any reaction, as long as the half-cell equilibrium potential is known, even for reactions that do not transfer the same number of protons and electrons. To illustrate its usability, we compare the adsorption potentials obtained with DFT of I*, Br*, Cl*, and SO4*on Pt(111) and Au(111) and OH*and Ag*on Pt(111) with those measured experimentally and find that this simple and computationally affordable method reproduces the experimental trends.
Collapse
Affiliation(s)
| | - Ian T McCrum
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Department of Chemical & Biomolecular Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, United States of America
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
16
|
Ibáñez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Detection of dithiocarbamate, chloronicotinyl and organophosphate pesticides by electrochemical activation of SERS features of screen-printed electrodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119174. [PMID: 33234478 DOI: 10.1016/j.saa.2020.119174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Enhancement of Raman intensity due to the electrochemical surface-enhanced Raman scattering (EC-SERS) effect is an interesting alternative to overcome the lack of sensitivity traditionally associated with Raman spectroscopy. Furthermore, activation of metallic screen-printed electrodes (SPEs) by electrochemical route leads to the reproducible generation of nanostructures with excellent SERS properties. EC-SERS procedure proposed in this work for the detection of several pesticides (thiram, imidacloprid and chlorpyrifos) with different nature, uses gold SPEs as SERS substrates, but also includes a preconcentration step as the initial and essential stage. Taking into account the small volume of solution employed, only 60 µL, the preconcentration cannot be performed for more than 15 min in order to ensure the proper contact of the solution with WE, RE and CE. Furthermore, selected temperature, 34 °C, is not very high to allow the exhaustive control of the drop volume. Optimization of preconcentration parameters (time and temperature) displays a crucial step, particularly in the detection of low concentrations of pesticides, because it will provide higher Raman intensity in EC-SERS experiments. After the initial step, gold SPEs were electrochemically activated by cyclic voltammetry, allowing the detection of very low concentration (µg·L-1) of pesticides due to the generation of fresh nanostructures with SERS effect.
Collapse
Affiliation(s)
- David Ibáñez
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain.
| | - María Begoña González-García
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain
| | - David Hernández-Santos
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain
| | - Pablo Fanjul-Bolado
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain.
| |
Collapse
|
17
|
Oliveira LG, Lemos SG, Fragoso WD. Simultaneous determination of benzenediol isomers in tap water by second-order calibration and voltabsorptometry. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Perez-Estebanez M, Hernandez S, Perales-Rondon JV, Gomez E, Heras A, Colina A. Chemical selectivity in electrochemical surface oxidation enhanced Raman scattering. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Purwidyantri A, Karina M, Hsu CH, Srikandace Y, Prabowo BA, Lai CS. Facile Bacterial Cellulose Nanofibrillation for the Development of a Plasmonic Paper Sensor. ACS Biomater Sci Eng 2020; 6:3122-3131. [DOI: 10.1021/acsbiomaterials.9b01890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Agnes Purwidyantri
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung 40135, Indonesia
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Biosensor Group, Chang Gung University, Taoyuan 33302, Taiwan
| | - Myrtha Karina
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung 40135, Indonesia
| | - Chih-Hsien Hsu
- Department of Electronic Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yoice Srikandace
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung 40135, Indonesia
| | - Briliant Adhi Prabowo
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Research Center for Electronics and Telecommunications, Indonesian Institute of Sciences, Bandung 40135, Indonesia
- Biosensor Group, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chao-Sung Lai
- Department of Electronic Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Biosensor Group, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
20
|
Luo H, Ji X, Cheng S. Investigation into the electrochemical behaviour of silver in alkaline solution and the influence of Au-decoration using operando Raman spectroscopy. RSC Adv 2020; 10:8453-8459. [PMID: 35497824 PMCID: PMC9050062 DOI: 10.1039/c9ra10282e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/04/2020] [Indexed: 11/21/2022] Open
Abstract
To explore the basic chemistry in the electrochemical environment, the electrochemical behavior of Ag and the influence of Au decoration is investigated with cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and operando Raman measurements in a 1 M KOH solution. During the anodic CV sweep, Ag is oxidized to Ag2O in the first step through a one-electron process, and then, AgO in the second step through another one-electron process. Meanwhile, some AgO is formed at a relatively low potential under the irradiation of visible lights (photoelectrochemical oxidation). In the GCD mode, it is found that apart from the two one-electron processes, part of the Ag is oxidized to AgO directly through a two-electron process in the second oxidation step, implying slightly different activities of these reactions in the CV and GCD mode. During cathodic CV sweep and galvanostatic discharge, opposite reactions take place respectively. The coulombic efficiency is calculated to be only ∼82% from the CV cycle at 5 mV s−1 due to the formation of silver hydroxyl species (oxidation state) in a low potential range. For the Au decorated Ag, Raman signals from these species disappeared and the coulombic efficiency is enhanced to 95%, indicating an obvious improvement in reversibility. Apart from the traditional charge storage mechanism demonstrated in CV, a two-electron process of Ag to AgO is revealed in GCD.![]()
Collapse
Affiliation(s)
- Haowei Luo
- Guang Zhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology Guangzhou 510006 P. R. China
| | - Xu Ji
- College of Automation, Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Shuang Cheng
- Guang Zhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
21
|
Electrochemical SERS and SOERS in a single experiment: A new methodology for quantitative analysis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Lozeman JJA, Führer P, Olthuis W, Odijk M. Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques. Analyst 2020; 145:2482-2509. [DOI: 10.1039/c9an02105a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reviewing the future of electrochemistry combined with infrared, Raman, and nuclear magnetic resonance spectroscopy as well as mass spectrometry.
Collapse
Affiliation(s)
- Jasper J. A. Lozeman
- BIOS Lab-on-a-Chip Group
- MESA+ Institute
- University of Twente
- 7522 NB Enschede
- The Netherlands
| | - Pascal Führer
- BIOS Lab-on-a-Chip Group
- MESA+ Institute
- University of Twente
- 7522 NB Enschede
- The Netherlands
| | - Wouter Olthuis
- BIOS Lab-on-a-Chip Group
- MESA+ Institute
- University of Twente
- 7522 NB Enschede
- The Netherlands
| | - Mathieu Odijk
- BIOS Lab-on-a-Chip Group
- MESA+ Institute
- University of Twente
- 7522 NB Enschede
- The Netherlands
| |
Collapse
|
23
|
Ibáñez D, Pérez-Junquera A, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Spectroelectrochemical elucidation of B vitamins present in multivitamin complexes by EC-SERS. Talanta 2019; 206:120190. [PMID: 31514825 DOI: 10.1016/j.talanta.2019.120190] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 11/19/2022]
Abstract
Raman spectroelectrochemistry based on electrochemical surface-enhanced Raman scattering (EC-SERS) effect is an interesting alternative to overcome the lack of sensitivity of normal Raman spectroscopy. Electrochemical activation of metallic screen-printed electrodes (SPEs) leads to the reproducible generation of nanostructures with excellent SERS properties. In that way, gold SPEs circumvent the traditional reproducibility limitation and produce the enhancement of the Raman intensity to favor the detection of low concentrations. Furthermore, fingerprint features of Raman spectroscopy make possible the dynamic spectroelectrochemical analysis of B vitamins. The accuracy assignments of Raman bands associated with B1, B2, B3, B6 and B12 vitamins present in multivitamin complexes provides valuable information, allowing us not only the detection of B vitamin present in mixtures, but also to understand the interaction between vitamins and metallic SERS surfaces.
Collapse
Affiliation(s)
- David Ibáñez
- Metrohm DropSens S.L., Edificio CEEI, Parque Tecnológico de Asturias, 33428, Llanera, Spain.
| | | | | | - David Hernández-Santos
- Metrohm DropSens S.L., Edificio CEEI, Parque Tecnológico de Asturias, 33428, Llanera, Spain
| | - Pablo Fanjul-Bolado
- Metrohm DropSens S.L., Edificio CEEI, Parque Tecnológico de Asturias, 33428, Llanera, Spain.
| |
Collapse
|
24
|
Hernandez S, Perales-Rondon JV, Heras A, Colina A. Determination of uric acid in synthetic urine by using electrochemical surface oxidation enhanced Raman scattering. Anal Chim Acta 2019; 1085:61-67. [PMID: 31522731 DOI: 10.1016/j.aca.2019.07.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 01/16/2023]
Abstract
In this work, a new and easy methodology to determine uric acid in relevant samples using Raman spectroelectrochemistry is presented. The spectroelectrochemistry experiment is based on the in-situ formation of a suitable substrate that enables the enhancement of the Raman signal of an analyte during the oxidation stage of a silver electrode. This phenomenon is known as electrochemical surface oxidation enhanced Raman scattering (EC-SOERS) and has proved to be useful in quantitative analysis using disposable screen printed electrodes. The successful combination of EC-SOERS with PARAFAC analysis allows the determination of uric acid in a relevant complex sample avoiding the use of standard addition method and without using a baseline correction, which simplifies the application of such methodology in routine analysis.
Collapse
Affiliation(s)
- Sheila Hernandez
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos S/n, E-09001, Burgos, Spain
| | - Juan V Perales-Rondon
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos S/n, E-09001, Burgos, Spain.
| | - Aranzazu Heras
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos S/n, E-09001, Burgos, Spain
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos S/n, E-09001, Burgos, Spain.
| |
Collapse
|
25
|
Garoz‐Ruiz J, Perales‐Rondon JV, Heras A, Colina A. Spectroelectrochemical Sensing: Current Trends and Challenges. ELECTROANAL 2019. [DOI: 10.1002/elan.201900075] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jesus Garoz‐Ruiz
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | | | - Aranzazu Heras
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Alvaro Colina
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| |
Collapse
|
26
|
Garoz-Ruiz J, Guillen-Posteguillo C, Colina A, Heras A. Application of spectroelectroanalysis for the quantitative determination of mixtures of compounds with highly overlapping signals. Talanta 2019; 195:815-821. [DOI: 10.1016/j.talanta.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
|
27
|
Neves MMPDS, Martín-Yerga D. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. BIOSENSORS 2018; 8:E100. [PMID: 30373209 PMCID: PMC6316691 DOI: 10.3390/bios8040100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Individual (bio)chemical entities could show a very heterogeneous behaviour under the same conditions that could be relevant in many biological processes of significance in the life sciences. Conventional detection approaches are only able to detect the average response of an ensemble of entities and assume that all entities are identical. From this perspective, important information about the heterogeneities or rare (stochastic) events happening in individual entities would remain unseen. Some nanoscale tools present interesting physicochemical properties that enable the possibility to detect systems at the single-entity level, acquiring richer information than conventional methods. In this review, we introduce the foundations and the latest advances of several nanoscale approaches to sensing and imaging individual (bio)entities using nanoprobes, nanopores, nanoimpacts, nanoplasmonics and nanomachines. Several (bio)entities such as cells, proteins, nucleic acids, vesicles and viruses are specifically considered. These nanoscale approaches provide a wide and complete toolbox for the study of many biological systems at the single-entity level.
Collapse
Affiliation(s)
| | - Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|