1
|
Lei H, Wei T, Tu J, Li S, Jiao S. Enhancing Electrochemical Performance of Aluminum-Ion Batteries with Fluorinated Graphene Cathode. CHEMSUSCHEM 2024; 17:e202400423. [PMID: 38687091 DOI: 10.1002/cssc.202400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
In pursuit of high-performance aluminum-ion batteries, the selection of a suitable positive electrode material assumes paramount importance, and fluorinated graphene (FG) nanostructures have emerged as an exceptional candidate. In the scope of this study, a flexible tantalum foil is coated with FG to serve as the positive electrode for aluminum-ion batteries. FG positive electrode demonstrates a remarkable discharge capacity of 109 mA h g-1 at a current density of 200 mA g-1, underscoring its tremendous potential for energy storage applications. Concurrently, the FG positive electrode exhibits a discharge capacity of 101 mA h g-1 while maintaining an impressive coulombic efficiency of 95 % over 300 cycles at a current density of 200 mA g-1, which benefiting from the significant structure of FG. The results of the in-situ Raman spectroscopy signified the presence of intercalation/de-intercalation processes of AlCl4 - behavior within the FG layers.
Collapse
Affiliation(s)
- Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 100083, Beijing, PR China
| | - Tianwei Wei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 100083, Beijing, PR China
| | - Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, Beijing, PR China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 100083, Beijing, PR China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, Beijing, PR China
| |
Collapse
|
2
|
Ling W, Wang H. Study on Electrochemical Properties of Cobalt-nickel Alloy Prepared by Pulsed Electrodeposition. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
3
|
Facile synthesis of fluorinated graphene/NiCo2O4 nanorods composite with high supercapacitive performance. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02264-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Hu X, Liu S, Wang Y, Huang X, Jiang J, Cong H, Lin H, Han S. Hierarchical CuCo 2O 4@CoS-Cu/Co-MOF core-shell nanoflower derived from copper/cobalt bimetallic metal-organic frameworks for supercapacitors. J Colloid Interface Sci 2021; 600:72-82. [PMID: 34004431 DOI: 10.1016/j.jcis.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
Rational design of composite materials with unique core-shell nanoflower structures is an important strategy for improving the electrochemical properties of supercapacitors such as capacitance and cycle stability. Herein, a two-step electrodeposition technique is used to orderly synthesize CuCo2O4 and CoS on Ni foam coated with Cu/Co bimetal metal organic framework (Cu/Co-MOF) to fabricate a hierarchical core-shell nanoflower material (CuCo2O4@CoS-Cu/Co-MOF). This unique structure can increase the electrochemically active site of the composite, promoting the Faradaic redox reaction and enhancing its electrochemical properties. CuCo2O4@CoS-Cu/Co-MOF shows a prominent specific capacitance of 3150 F g-1 at 1 A g-1, marvelous rate performance of 81.82% (2577.3 F g-1 at 30 A g-1) and long cycle life (maintaining 96.74% after 10,000 cycles). What is more, the assembled CuCo2O4@CoS-Cu/Co-MOF//CNTs device has an energy density of 73.19 Wh kg-1 when the power density is 849.94 W kg-1. It has unexpected application prospects.
Collapse
Affiliation(s)
- Xiaomin Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Shunchang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Yunyun Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Long Teng Road 333, 201620 Shanghai, PR China
| | - Xing Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Jibo Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
| | - Haishan Cong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Hualin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China; College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Long Teng Road 333, 201620 Shanghai, PR China.
| |
Collapse
|
5
|
Dou Q, Wu N, Yuan H, Shin KH, Tang Y, Mitlin D, Park HS. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chem Soc Rev 2021; 50:6734-6789. [PMID: 33955977 DOI: 10.1039/d0cs00721h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrochemical capacitors charge and discharge more rapidly than batteries over longer cycles, but their practical applications remain limited due to their significantly lower energy densities. Pseudocapacitors and hybrid capacitors have been developed to extend Ragone plots to higher energy density values, but they are also limited by the insufficient breadth of options for electrode materials, which require materials that store alkali metal cations such as Li+ and Na+. Herein, we report a comprehensive and systematic review of emerging anion storage materials for performance- and functionality-oriented applications in electrochemical and battery-capacitor hybrid devices. The operating principles and types of dual-ion and whole-anion storage in electrochemical and hybrid capacitors are addressed along with the classification, thermodynamic and kinetic aspects, and associated interfaces of anion storage materials in various aqueous and non-aqueous electrolytes. The charge storage mechanism, structure-property correlation, and electrochemical features of anion storage materials are comprehensively discussed. The recent progress in emerging anion storage materials is also discussed, focusing on high-performance applications, such as dual-ion- and whole-anion-storing electrochemical capacitors in a symmetric or hybrid manner, and functional applications including micro- and flexible capacitors, desalination, and salinity cells. Finally, we present our perspective on the current impediments and future directions in this field.
Collapse
Affiliation(s)
- Qingyun Dou
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 440-746, Korea.
| | | | | | | | | | | | | |
Collapse
|
6
|
Muhammad I, Jabeen M, Wang P, He YS, Liao XZ, Ma ZF. Spray-dried assembly of 3D N,P-Co-doped graphene microspheres embedded with core-shell CoP/MoP@C nanoparticles for enhanced lithium-ion storage. Dalton Trans 2021; 50:4555-4566. [PMID: 33729235 DOI: 10.1039/d1dt00210d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The advancement of novel synthetic approaches for micro/nanostructural manipulation of transition metal phosphide (TMP) materials with precisely controlled engineering is crucial to realize their practical use in batteries. Here, we develop a novel spray-drying strategy to construct three-dimensional (3D) N,P co-doped graphene (G-NP) microspheres embedded with core-shell CoP@C and MoP@C nanoparticles (CoP@C⊂G-NP, MoP@⊂G-NP). This intentional design shows a close correlation between the microstructural G-NP and chemistry of the core-shell CoP@C/MoP@C nanoparticle system that contributes towards their anode performance in lithium-ion batteries (LIBs). The obtained structure features a conformal porous G-NP framework prepared via the co-doping of heteroatoms (N,P) that features a 3D conductive highway that allows rapid ion and electron passage and maintains the overall structural integrity of the material. The interior carbon shell can efficiently restrain volume evolution and prevent CoP/MoP nanoparticle aggregation, providing excellent mechanical stability. As a result, the CoP@C⊂G-NP and MoP@⊂G-NP composites deliver high specific capacities of 823.6 and 602.9 mA h g-1 at a current density of 0.1 A g-1 and exhibit excellent cycling stabilities of 438 and 301 mA h g-1 after 500 and 800 cycles at 1 A g-1. The present work details a novel approach to fabricate core-shell TMPs@C⊂G-NP-based electrode materials for use in next-generation LIBs and can be expanded to other potential energy storage applications.
Collapse
Affiliation(s)
- Ishaq Muhammad
- Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | |
Collapse
|
7
|
Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Nicolosi V, Xiao X, Lee JM. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev 2021; 50:1354-1390. [DOI: 10.1039/d0cs00415d] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarizes the progress on the structural and electronic modulation of transition metal nitrides for electrochemical energy applications.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Ke Li
- School of Chemistry
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Yanping Lin
- College of Energy, Soochow Institute for Energy and Materials Innovations, & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University
- Suzhou 215006
- China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
- Suzhou 215123
- China
| | - Lijun Gao
- College of Energy, Soochow Institute for Energy and Materials Innovations, & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University
- Suzhou 215006
- China
| | - Valeria Nicolosi
- School of Chemistry
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
8
|
Yan T, Feng H, Ma X, Han L, Zhang L, Cao S. Regulating the electrochemical behaviours of a hierarchically structured Co 3(PO 4) 2/Ni-Co-O for a high-performance all-solid-state supercapacitor. Dalton Trans 2020; 49:10621-10630. [PMID: 32697203 DOI: 10.1039/d0dt01818j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Battery-type materials (e.g., transition metal phosphates) have been intensely explored in supercapacitors due to their rich electroactive sites and high theoretical capacity. Yet poor rate performance, resulting in a low energy density at high current density, limits their further applications. Herein, an improvement in rate performance resulting from enhanced surface capacitive behaviour contribution has been observed in a hierarchically structured Co3(PO4)2/Ni-Co-O@Ni foam (CPNO-12). The optimized CPNO-12 synthesized through a facile hydrothermal treatment also exhibits a striking gravimetric and areal capacity of 1410C g-1 (14 100 mC cm-2) at 5 mA cm-2 and superb cyclability (91% of retention at 50 mA cm-2 after 12 000 cycles), which can be attributed to its unique hierarchical porous structure and high mass loading per area. More importantly, a high-performance all-solid-state asymmetric supercapacitor with CPNO-12 and Fe2P/graphene hydrogel@Ni foam as positive and negative electrodes respectively has been assembled; the device delivering a maximum energy density of 95 W h kg-1 (32 mW h cm-3) and maximum power density of 4000 W kg-1 (800 mW cm-3) has the potential to power sophisticated systems. These attractive performances confirm that an enhancement of capacitive behaviour in battery-type materials holds the promise for fabricating high-performance supercapacitors.
Collapse
Affiliation(s)
- Tianxiang Yan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Hanfang Feng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Xueying Ma
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Lifeng Han
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. and College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Li Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. and Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. and Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
9
|
Jiang J, Sun Y, Chen Y, Zhou Q, Rong H, Hu X, Chen H, Zhu L, Han S. Design and fabrication of metal-organic frameworks nanosheet arrays constructed by interconnected nanohoneycomb-like nickel-cobalt oxide for high energy density asymmetric supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Gao X, Wang P, Pan Z, Claverie JP, Wang J. Recent Progress in Two-Dimensional Layered Double Hydroxides and Their Derivatives for Supercapacitors. CHEMSUSCHEM 2020; 13:1226-1254. [PMID: 31797566 DOI: 10.1002/cssc.201902753] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/28/2019] [Indexed: 06/10/2023]
Abstract
High-performance supercapacitors have attracted great attention due to their high power, fast charging/discharging, long lifetime, and high safety. However, the generally low energy density and overall device performance of supercapacitors limit their applications. In recent years, the design of rational electrode materials has proven to be an effective pathway to improve the capacitive performances of supercapacitors. Layered double hydroxides (LDHs), have shown great potential in new-generation supercapacitors, due to their unique two-dimensional layered structures with a high surface area and tunable composition of the host layers and intercalation species. Herein, recent progress in LDH-based, LDH-derived, and composite-type electrode materials targeted for applications in supercapacitors, by tuning the chemical/metal composition, growth morphology, architectures, and device integration, is reviewed. The complicated relationships between the composition, morphology, structure, and capacitive performance are presented. A brief projection is given for the challenges and perspectives of LDHs for energy research.
Collapse
Affiliation(s)
- Xiaorui Gao
- School of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, PR China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, 2500, Boulevard de l'Universite, Sherbrooke, J1K 2R1, Québec, Canada
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Jerome P Claverie
- Department of Chemistry, University of Sherbrooke, 2500, Boulevard de l'Universite, Sherbrooke, J1K 2R1, Québec, Canada
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| |
Collapse
|
11
|
Pourfarzad H, Shabani-Nooshabadi M, Ganjali MR, Kashani H. Synthesis of Ni–Co-Fe layered double hydroxide and Fe2O3/Graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.122] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Yu C, Lu J, Luo L, Xu F, Shen PK, Tsiakaras P, Yin S. Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
William JJ, Babu IM, Muralidharan G. Lithium ferrite (α-LiFe 5O 8) nanorod based battery-type asymmetric supercapacitor with NiO nanoflakes as the counter electrode. NEW J CHEM 2019. [DOI: 10.1039/c9nj03774h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabricated battery-type NiO//α-LiFe5O8 cell could deliver a specific energy of 30 W h Kg−1 at a specific power of 621 W kg−1 with 90.5% capacity retention at the end of 5000 GCD cycles.
Collapse
Affiliation(s)
- J. Johnson William
- Department of Physics
- The Gandhigram Rural Institute (Deemed to be University)
- Gandhigram-624302
- India
| | - I. Manohara Babu
- Department of Physics
- The Gandhigram Rural Institute (Deemed to be University)
- Gandhigram-624302
- India
| | - G. Muralidharan
- Department of Physics
- The Gandhigram Rural Institute (Deemed to be University)
- Gandhigram-624302
- India
| |
Collapse
|