1
|
Yang J, Xu L. NiCu-layered double hydroxide-modified CuO nanorods for enhanced non-enzymatic glucose sensing. Mikrochim Acta 2025; 192:198. [PMID: 40025214 DOI: 10.1007/s00604-025-07061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
A flexible non-enzymatic glucose sensor with high sensitivity (NiCu-LDH/CuO/NCC) was prepared by growing NiCu-layered double hydroxide (NiCu-LDH)-modified CuO nanorods on N-doped carbon cloth (NCC) using hydrothermal method and electrodeposition. The NCC provided abundant attachment sites and good electrical conductivity for CuO nanorods, and the hierarchical nanostructures (NiCu-LDH/CuO) had large specific surface area and highly catalytic active sites, which facilitated the electrooxidation of glucose. The effect of the ratio of Ni to Cu on the electrocatalytic performance of NiCu-LDH/CuO/NCC was evaluated. The results indicated that the optimized NiCu-LDH/CuO/NCC (Ni/Cu molar ratio of 2:1) had good electrocatalytic oxidation toward glucose, and exhibited high sensitivity (11.545 mA cm-2 mM-1), low detection limit (0.26 μM), large linear range (0.001-1.5 mM), and good stability (95% after 28 days). Therefore, the hierarchical nanostructure is suitable for the construction of flexible non-enzymatic glucose sensors with high sensitivity, indicating that the combination of transition metal oxides and LDH provides a unique opportunity for designing high-performance electrochemical non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Jiahao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, Suzhou, 215123, China
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, Suzhou, 215123, China.
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Kulkarni R, Patil SR, Lingamdinne LP, Chodankar N, Chang YY, Bae J, Koduru JR. Graphitic Carbon Nitride-Supported Layered Double Hydroxides (GCN@FeMg-LDH) for Efficient Water Splitting and Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9253-9265. [PMID: 39878617 DOI: 10.1021/acsami.4c17996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.018 and 0.284 V and 0.101 and 0.365 V at 10 and 600 mA/cm2 toward the hydrogen evolution (HER) and oxygen evolution (OER) reactions, respectively, in 1.0 M KOH. Furthermore, we leveraged the potential of the GCN@FeMg-LDH composite to develop a high-performance TENG suitable for practical electronic applications. The resulting GCN@FeMg-LDH-based TENG device, sized at 3 × 4 cm2, demonstrated a substantial current output of 52 μA and a voltage output of 771 V. Notably, this TENG device exhibited an instantaneous power output of 5780 μW and exceptional stability, enduring over 15 000 cycles. Thus, this study concludes that the GCN@FeMg-LDH composite emerges as a superior candidate for applications in water splitting and TENGs, exhibiting significant promise for advancing clean energy technologies, in addition to lowering greenhouse gas emissions.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Swapnil R Patil
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Korea
| | | | - Nilesh Chodankar
- Mechanical Engineering Department, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jinho Bae
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
3
|
Xie R, Yang H, Qiu X, Guo W. FeOOH-CoFe layered double hydroxide carbon felt cathode for the electro-Fenton degradation of oxytetracycline in aqueous solution. ENVIRONMENTAL TECHNOLOGY 2025:1-13. [PMID: 39933549 DOI: 10.1080/09593330.2025.2460839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Heterogeneous electro-Fenton is one of green and promising technologies for removing organic pollutants. In this paper, the FeOOH-CoFe layered double hydroxide carbon felt (LDH/CF) was synthesized by a facile hydrothermal method for an efficient degradation of oxytetracycline (OTC). The structural morphology and elemental composition of the composite electrode were studied by scanning electron microscopy, X-ray diffractometer, and X-ray photoelectron spectroscopy. Then, the electrocatalytic activity of the composite electrode was analysed through electrochemical characterization such as cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. The removal rate of 20 mg/L OTC reached about 91.6% at pH = 3, with a current density of 6.67 mA cm-2 within 60 minute in the hydrophobic FeOOH-CoFe LDH/CF + PTFE system. Moreover, the catalytic electrode exhibited impressive degradation efficiency over a wide pH range. According to quenching experiments, the principal reactive oxygen species (·O2-, ·OH, and 1O2) involved in the degradation of OTC was identified. Based on this discovery, the possible mechanism for the degradation of OTC was also proposed. In addition, the cyclic experiment demonstrated relatively excellent stability of the hydrophobic FeOOH-CoFe LDH/CF + PTFE electrode, which provided the possibility for the practical application of the electrode.
Collapse
Affiliation(s)
- Ruiqi Xie
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Honglei Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Xuan Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Weilin Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
4
|
Hao M, Chen J, Chen J, Wang K, Wang J, Lei F, Hao P, Sun X, Xie J, Tang B. Lattice-disordered high-entropy metal hydroxide nanosheets as efficient precatalysts for bifunctional electro-oxidation. J Colloid Interface Sci 2023; 642:41-52. [PMID: 37001456 DOI: 10.1016/j.jcis.2023.03.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Electro-oxidation reactions (EORs) are important half reactions in overall and assisted water electrolysis, which are crucial in achieving economic and sustainable hydrogen production and realizing simultaneous wastewater treatment. Current studies indicate that the high-valence metal ions that are locally enriched in the catalysts or generated in situ during the anodic preoxidation process are active species for EORs. Hence, designing (pre)catalysts with enriched local active sites and boosted preoxidation is of great importance. In this work, with a focus on improving the EOR performance toward the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR), we fabricated a lattice-disordered high-entropy FeCuCoNiZn hydroxide nanoarray catalyst that exhibits robust bifunctional OER and UOR behavior. The high-entropy feature could bring in a unique catalytic ensemble effect and remarkably improve the intrinsic OER/UOR activity. The lattice-disordered structure could not only enrich the local high-valence metal ions as active sites but also provide abundant reactive surface sites to accelerate the preoxidation process, thus leading to enriched active sites for the OER and UOR. Benefitting from the structural merits, the lattice-disordered high-entropy catalyst exhibits excellent OER and UOR activity with low overpotential, large current density and enhanced intrinsic activity, and no performance degradation but dramatic 35.3% and 88.7% enhancement in activity can be achieved during the long-term OER and UOR tests, respectively. The robust OER and UOR performance makes the lattice-disordered high-entropy catalyst a promising candidate for overall and urea-assisted water electrolysis from industrial, agricultural and sanitary wastewater.
Collapse
Affiliation(s)
- Min Hao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Jing Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Jinyue Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Kexin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Jiale Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Pin Hao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, PR China.
| | - Junfeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, PR China.
| |
Collapse
|
5
|
He X, Qiao T, Zhang Z, Liu H, Wang S, Wang X. Carbon cloth supporting spinel CuMn 0.5Co 2O 4 nanoneedles with the regulated electronic structure by multiple metal elements as catalysts for efficient oxygen evolution reaction. J Colloid Interface Sci 2023; 649:635-645. [PMID: 37364463 DOI: 10.1016/j.jcis.2023.06.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Developing transition metal oxide catalysts to replace the noble metal oxide catalysts for efficient oxygen evolution reaction (OER) is essential to promote the practical application of water splitting. Herein, we designed and constructed the carbon cloth (CC) supporting spinel CuMn0.5Co2O4 nanoneedles with regulated electronic structure by multiple metal elements with variable chemical valences in the spinel CuMn0.5Co2O4. The carbon cloth not only provided good conductivity for the catalytic reaction but also supported the well-standing spinel CuMn0.5Co2O4 nanoneedles arrays with a large special surface area. Meanwhile, the well-standing nanoneedles arrays and mesoporous structure of CuMn0.5Co2O4 nanoneedles enhanced their wettability and facilitated access for electrolyte to electrochemical catalysis. Besides, the regulated electronic structure and generated oxygen vacancies of CuMn0.5Co2O4/CC by multiple metal elements improved the intrinsic catalytic activity and the durability of OER activity. Profiting from these merits, the CuMn0.5Co2O4/CC electrode exhibited superior OER activity with an ultralow overpotential of 189 mV at the current density of 10 mA⋅cm-2 and a smaller Tafel slope of 64.1 mV⋅dec-1, which was competitive with the noble metal oxides electrode. And the CuMn0.5Co2O4/CC electrode also exhibited long-term durability for OER with 95.3% of current retention after 1000 cycles. Therefore, the competitive OER activity and excellent cycling durability suggested that the CuMn0.5Co2O4/CC electrode is a potential candidate catalyst for efficient OER.
Collapse
Affiliation(s)
- Xuanmeng He
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Tong Qiao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Zeqin Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Shaolan Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xinzhen Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, PR China
| |
Collapse
|
6
|
Abraham DS, Chandran M, Vinoba M, Yamuna R, Bhagiyalakshmi M. Flower-like Layered NiCu-LDH/MXene Nanocomposites as an Anodic Material for Electrocatalytic Oxidation of Methanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4756-4765. [PMID: 36943685 DOI: 10.1021/acs.langmuir.3c00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct methanol fuel cell (DMFC) technology has grabbed much attention from researchers worldwide in the realm of green and renewable energy-generating technologies. Practical applications of DMFCs are marked by the development of highly active, efficient, economical, and long-lasting anode catalysts. Layered double hydroxide (LDH) nanohybrids are found to be efficient electrode materials for methanol oxidation. In this study, we synthesized NiCu-LDH/MXene nanocomposites (NCMs) and investigated their electrochemical performance for methanol oxidation. The formation of NCM was verified through field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET), and X-ray photoemission spectroscopy (XPS) analyses. The cyclic voltammetry, chronoamperometry, and electron impedance spectroscopy techniques were carried out to assess the electrocatalytic ability of the methanol oxidation reaction. The incorporation of MXene enhanced the methanol oxidation 2-fold times higher than NiCu-LDH. NCM-45 exhibited high peak current density (86.9 mA cm-2), enhanced electrochemical active surface area (7.625 cm2), and long-term stability (77.8% retention after 500 cycles). The superior performance of NCM can be attributed to the synergistic effect between Ni and Cu and, further, the electronic coupling between LDH and MXene. Based on the results, NCM nanocomposite is an efficient anodic material for the electrocatalytic oxidation of methanol. This study will open the door for the development of various LDH/MXene nanocomposite electrode materials for the application of direct methanol fuel cells.
Collapse
Affiliation(s)
- Dana Susan Abraham
- Department of Chemistry, Central University of Kerala, Periye, Kerala 671316, India
| | - Mijun Chandran
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610001, India
| | - Mari Vinoba
- Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Ramasamy Yamuna
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu 641112, India
| | | |
Collapse
|
7
|
Sabir AS, Pervaiz E, Khosa R, Sohail U. An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Adv 2023; 13:4963-4993. [PMID: 36793292 PMCID: PMC9924225 DOI: 10.1039/d2ra07901a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, there has been a resurgence of interest in developing green and renewable alternate energy sources as a solution to the energy and environmental problems produced by conventional fossil fuel use. As a very effective energy transporter, hydrogen (H2) is a possible candidate for the future energy supply. Hydrogen production by water splitting is a promising new energy option. Strong, efficient, and abundant catalysts are required for increasing the efficiency of the water splitting process. Cu-based materials as an electrocatalyst have shown promising results for application in the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in water splitting. In this review, our aim is to cover the latest developments in the synthesis, characterisation, and electrochemical behaviour of Cu-based materials as a HER, and OER electrocatalyst, highlighting the impact that these advances have had on the field. It is intended that this review article will serve as a roadmap for developing novel, cost-effective electrocatalysts for electrochemical water splitting based on nanostructured materials with particular emphasis on Cu-based materials for electrocatalytic water splitting.
Collapse
Affiliation(s)
- Abdul Shakoor Sabir
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Erum Pervaiz
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Rafiq Khosa
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Umair Sohail
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| |
Collapse
|
8
|
He X, Qiao T, Li B, Zhang Z, Wang S, Wang X, Liu H. Tuning Electronic Structure of CuCo
2
O
4
Spinel via Mn‐Doping for Enhancing Oxygen Evolution Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xuanmeng He
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Tong Qiao
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Beijun Li
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Zeqin Zhang
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Shaolan Wang
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| | - Xinzhen Wang
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao Shandong 266590 P. R. China
| | - Hui Liu
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an Shaanxi 710021 P. R. China
| |
Collapse
|
9
|
Direct Growth of TiO2–MoO2/MnO2–MoO2 on Plasma-Treated Carbon-Cloth Surface for High-Performance Supercapacitor and Oxygen Evolution Reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Preparation of NiCuGO composite and investigation of its electrocatalytic properties in methanol oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Hu X, Zhang L, Li S, Chen J, Zhang B, Zheng Z, He H, Luo S, Xie A. High catalytic performance of nano-flowered Mg-doped NiCo layered double hydroxides for the oxygen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj03563d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered double hydroxides (LDHs) are one of the ideal functional materials for the oxygen evolution reaction (OER) because of their special configuration and good electrochemical activity.
Collapse
Affiliation(s)
- Xiabing Hu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Lidong Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shuyu Li
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiayan Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Baoying Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhiyuan Zheng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Hongyu He
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shiping Luo
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Aijuan Xie
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
12
|
Sadigh Akbari S, Karadas F. Selective Photocatalytic CO2 Reduction by Cobalt Dicyanamide. Dalton Trans 2022; 51:12569-12575. [DOI: 10.1039/d2dt01606k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic conversion of CO2 into chemical fuels is a promising approach to tackle carbon emission and global warming. Herein, we promote a cobalt dicyanamide coordination compound, Co-dca, for the first...
Collapse
|
13
|
Nejati K, Jafari Foruzin L, Rezvani Z. Fast microwave-assisted preparation of nickel-copper-chromium-layered double hydroxide as an excellent electrocatalyst for water oxidation. Dalton Trans 2021; 50:7223-7228. [PMID: 33913451 DOI: 10.1039/d1dt01144h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a simple microwave method for the doping of Cu2+ into NiCr-LDH and the preparation of ternary Ni2.25Cu0.75Cr-LDH as a superior electrocatalyst for water oxidation in a neutral solution. The obtained Ni2.25Cu0.75Cr-LDH was characterized by XRD, DRS, TEM and FE-SEM techniques. The results showed that Ni2.25Cu0.75Cr-LDH was formed with a size of 30 nm. In order to examine the water oxidation activity of Ni2.25Cu0.75Cr-LDH, the as-prepared samples were used as an electrocatalyst-modified carbon paste electrode in neutral solution. The electrochemical results revealed that the optimized Ni2.25Cu0.75Cr-LDH presented extraordinary water oxidation activity with a low onset potential of 1.40 V (vs. RHE) and an overpotential of 170 mV compared to other molar ratios (Ni2.5Cu0. 5Cr-LDH), (Ni2CuCr-LDH), and bimetallic (CuCr-LDH), and even outperformed NiCr-LDH. Also, a small Tafel slope of 31 mV and high durability of 14 h could be obtained for Ni2.25Cu0.75Cr-LDH. The excellent OER could be assigned to the decreased band gap energy and increased charge transfer at Ni2.25Cu0.75Cr-LDH. Therefore, Ni2.25Cu0.75Cr-LDH is a promising water oxidation catalyst owing to its improved charge transfer ability.
Collapse
Affiliation(s)
- Kamellia Nejati
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Leila Jafari Foruzin
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Zolfaghar Rezvani
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
14
|
Annalakshmi M, Kumaravel S, Chen TW, Chen SM, Lou BS. 3D Flower-like NiCo Layered Double Hydroxides: An Efficient Electrocatalyst for Non-Enzymatic Electrochemical Biosensing of Hydrogen Peroxide in Live Cells and Glucose in Biofluids. ACS APPLIED BIO MATERIALS 2021; 4:3203-3213. [PMID: 35014407 DOI: 10.1021/acsabm.0c01600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, a hierarchical structure of flower-like NiCo layered double hydroxides (NiCo LDH) microspheres composed of three-dimensional (3D) ultrathin nanosheets was successfully synthesized via a facile hydrothermal approach. The formation of NiCo LDH was confirmed by various physicochemical studies, and the NiCo LDH-modified glassy carbon electrode was used as an efficient dual-functional electrocatalyst for non-enzymatic glucose and hydrogen peroxide (H2O2) biosensor. The host matrix of hydrotalcite NiCo LDH exhibits the enhanced electrocatalytic sensing performances with a quick response time (<3 s), wide linear range (50 nM-18.95 mM and 20 nM-11.5 mM) and lowest detection limits (S/N = 3) (10.6 and 4.4 nM) toward glucose and H2O2, and also it exhibits good stability, selectivity, and reproducibility. In addition, this biosensor was successfully utilized to the real-time detection of endogenous H2O2 produced from live cells and glucose in various biological fluids, and demonstrates that the as synthesized NiCo LDH may provide a successful pathway for physiological and clinical pathological diagnosis.
Collapse
Affiliation(s)
- Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Sakthivel Kumaravel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.,Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Bih-Show Lou
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC.,Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| |
Collapse
|
15
|
Liu H, Guo Z, Lian J. Cu-doped Ni3S2 nanosheet arrays on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Kannimuthu K, Sangeetha K, Sam Sankar S, Karmakar A, Madhu R, Kundu S. Investigation on nanostructured Cu-based electrocatalysts for improvising water splitting: a review. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01060j] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, various forms of Cu based nanostructures have been explored in terms of improvise and enhancing their activity and durability with vast investigation for OER, HER and TWS applications.
Collapse
Affiliation(s)
- Karthick Kannimuthu
- Electrochemical Process Engineering (EPE) division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kumaravel Sangeetha
- Electrochemical Process Engineering (EPE) division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Selvasundarasekar Sam Sankar
- Electrochemical Process Engineering (EPE) division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Arun Karmakar
- Electrochemical Process Engineering (EPE) division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ragunath Madhu
- Electrochemical Process Engineering (EPE) division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
17
|
Lin C, Xia N, Zhou S, Tian J, Li H. Surfactant-Free Approach for Engineering an Ultrathin Ti-Doped Ni(OH) 2 Nanosheet on Carbon Cloth: Experimental and Theoretical Insight into Boosted Alkaline Water Oxidation Activity. Inorg Chem 2020; 59:10253-10261. [PMID: 32603102 DOI: 10.1021/acs.inorgchem.0c01408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ti-based layered double hydroxides (LDHs) have enormous potential in photocatalysis, electrocatalysis, and photoelectrocatalysis. However, Ti-based LDHs are rarely reported because of the difficulties of the preparation process, in which the Ti precursors are more prone to hydrolysis into titanium hydroxide. In this work, toward robust, efficient, and earth-abundant electrocatalysts for water oxidation in alkaline environments, we have engineered Ti-doped Ni(OH)2 nanosheet arrays on carbon cloth [Ti-Ni(OH)2/CC] with a facile solvothermal and surfactant-free method. The experimental tests show that the activity of Ti-Ni(OH)2-1/CC (∼12.5 atom % Ti substitution) is optimal among these materials. In addition, the activity is correlated with the Ti substitution ratio and reversed with higher Ti doping level (≥25 atom % Ti substitution). Therein, η10 of Ti-Ni(OH)2-1/CC is as low as 196 mV, and it is still maintained at 210 mV after a long-term chronopotentiometry (CP) test at a constant current density of 10 mA cm-2 for 32 h, demonstrating superior activity and long-term durability. Density functional theory calculations further reveal that dilute Ti substitution produces extra active sites and promotes more optimal OH* adsorption to the surface of the electrocatalyst.
Collapse
Affiliation(s)
- Chong Lin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Nannan Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Si Zhou
- Education Ministry Key Lab of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingyang Tian
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Huiqin Li
- Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| |
Collapse
|
18
|
Dinh KN, Sun Y, Pei Z, Yuan Z, Suwardi A, Huang Q, Liao X, Wang Z, Chen Y, Yan Q. Electronic Modulation of Nickel Disulfide toward Efficient Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905885. [PMID: 32243082 DOI: 10.1002/smll.201905885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Developing highly efficient earth-abundant nickel-based compounds is an important step to realize hydrogen generation from water. Herein, the electronic modulation of the semiconducting NiS2 by cation doping for advanced water electrolysis is reported. Both theoretical calculations and temperature-dependent resistivity measurements indicate the semiconductor-to-conductor transition of NiS2 after Cu incorporation. Further calculations also suggest the advantages of Cu dopant to cathodic water electrolysis by bringing Gibbs free energy of H adsorption at both Ni sites and S sites much closer to zero. It is noteworthy that water dissociation on Cu-doped NiS2 (Cu-NiS2 ) surface is even more favorable than those on NiS2 and Pt(111). Thus, the prepared Cu-NiS2 shows noticeably improved performance toward alkaline hydrogen and oxygen evolution reactions (HER and OER). Specifically, it requires merely 232 mV OER overpotential to drive 10 mA cm-2 ; in parallel with Tafel slopes of 46 mV dec-1 . Regarding HER, an onset overpotential of only 68 mV is achieved. When integrated as both electrodes for water electrolysis, Cu-NiS2 needs only 1.64 V to drive 10 mA cm-2 , surpassing the state-of-the-art Ir/C-Pt/C couple (1.71 V). This work opens up an avenue to engineer low-cost and earth-abundant catalysts performing on par with the noble-metal-based one for water splitting.
Collapse
Affiliation(s)
- Khang Ngoc Dinh
- Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 637553, Singapore
- School of Materials Science and Engineering Nanyang Technological University, Singapore, 639798, Singapore
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yongxiu Sun
- School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ady Suwardi
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way Innovis #08-03, Singapore, 138634, Singapore
| | - Qianwei Huang
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaozhou Liao
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zhiguo Wang
- School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qingyu Yan
- Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 637553, Singapore
- School of Materials Science and Engineering Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
19
|
Cai M, Liu Q, Zhao Y, Wang Z, Li Y, Li G. Accelerating charge transfer at an ultrafine NiFe-LDHs/CB interface during the electrocatalyst activation process for water oxidation. Dalton Trans 2020; 49:7436-7443. [DOI: 10.1039/d0dt00824a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Benefiting from chemical bonding interface and homogeneity of active sites, NiFe-LDHs/CB possesses a faster nickel redox process, a tighter interface structure, and an increased number of active sites during activation process.
Collapse
Affiliation(s)
- Mengke Cai
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Yiyue Zhao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Zhenyu Wang
- Guangdong Experimental High School
- Guangzhou 510375
- P. R. China
| | - Yinle Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| |
Collapse
|
20
|
Wang F, Zhao D, Zhang L, Fan L, Zhang X, Hu S. RETRACTED: Nanostructured Nickel Nitride with Reduced Graphene Oxide Composite Bifunctional Electrocatalysts for an Efficient Water-Urea Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1583. [PMID: 31717362 PMCID: PMC6915570 DOI: 10.3390/nano9111583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022]
Abstract
A three-dimensional nickel nitride with reduced graphene oxide composite on nickel foam (s-X, where s represents Ni3N/rGO@NF and the annealing temperature X can be 320, 350, or 380) electrode has been fabricated through a facile method. We demonstrate that s-350 has excellent urea oxidation reaction (UOR) activity, with a demanded potential of 1.342 V to reach 10 mA/cm2 and bears high hydrogen evolution reaction (HER) activity. It provides a low overpotential of 124 mV at 10 mA/cm2, which enables the successful construction of its two-electrode alkaline electrolyzer (s-350||s-350) for water-urea splitting. It merely requires a voltage of 1.518 V to obtain 100 mA/cm2 and is 0.145 V lower than that of pure water splitting. This noble metal-free bifunctional electrode is regarded as an inexpensive and effective water-urea electrolysis assisted hydrogen production technology, which is commercially viable.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China; (F.W.); (D.Z.)
| | - Dongsheng Zhao
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China; (F.W.); (D.Z.)
| | - Linbao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China;
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China; (F.W.); (D.Z.)
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China; (F.W.); (D.Z.)
| | - Shengnan Hu
- Wuhan Hudiandian Technology Co., Ltd., Wuhan 430000, China
| |
Collapse
|
21
|
Liu A, Tian H, Ju X, Wang W, Han P, Li W. In-situ growth of layered double hydroxides nanosheet arrays on graphite fiber as highly dispersed nanofillers for polymer coating with excellent anticorrosion performances. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Xie YS, Wang Z, Ju M, Long X, Yang S. Dispersing transition metal vacancies in layered double hydroxides by ionic reductive complexation extraction for efficient water oxidation. Chem Sci 2019; 10:8354-8359. [PMID: 31803413 PMCID: PMC6839596 DOI: 10.1039/c9sc02723h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/20/2019] [Indexed: 01/08/2023] Open
Abstract
Creating atomic defects in nanomaterials is an effective approach to promote the catalytic performance of a catalyst, but the defective catalysts are often prone to mechanical collapse if not properly synthesized. The uncontrollably formed defects also make it difficult to systematically investigate their effects on the catalytic performance. Herein, we report an efficient method of ionic reductive complexation extraction (IRCE) to fabricate atomic vacancies in a transition metal based nanomaterial without damaging its nanostructure, turning the otherwise catalytically inactive material to an advanced catalyst towards water oxidation in alkaline electrolyte. Here nickel based layered double hydroxide mixed with Cu(ii) is used to demonstrate the concept. With a tunable content and uniform dispersion of Cu(ii) on the brucite layer of the LDH, a suitable complexing agent could specifically combine with and remove the target Cu(ii), thereby creating the desired vacancies. The resulting vacancy rich TM LDH is found to be an excellent OER electrocatalyst with a low overpotential and small Tafel slope, due to the purposely modulated geometric and electronic structures of the active sites, and the greatly decreased charge transfer resistance.
Collapse
Affiliation(s)
- Yang-Shan Xie
- Guangdong Provincial Key Lab of Nano-Micro Material Research , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China . ;
| | - Zheng Wang
- Guangdong Provincial Key Lab of Nano-Micro Material Research , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China . ;
| | - Min Ju
- Guangdong Provincial Key Lab of Nano-Micro Material Research , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China . ;
| | - Xia Long
- Guangdong Provincial Key Lab of Nano-Micro Material Research , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China . ;
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Material Research , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China . ;
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China
| |
Collapse
|
23
|
Xu H, Liu W, Zhao Y, Wang D, Zhao J. Ammonia-induced synergistic construction of Co3O4@CuO microsheets: An efficient electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2019; 540:585-592. [DOI: 10.1016/j.jcis.2019.01.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022]
|