1
|
Huang C, Mu Y, Chu Y, Gu H, Liao Z, Han M, Zeng L. A review of vertical graphene and its energy storage system applications. J Chem Phys 2023; 159:211001. [PMID: 38038203 DOI: 10.1063/5.0179107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
The pursuit of advanced materials to meet the escalating demands of energy storage system has led to the emergence of vertical graphene (VG) as a highly promising candidate. With its remarkable strength, stability, and conductivity, VG has gained significant attention for its potential to revolutionize energy storage technologies. This comprehensive review delves deeply into the synthesis methods, structural modifications, and multifaceted applications of VG in the context of lithium-ion batteries, silicon-based lithium batteries, lithium-sulfur batteries, sodium-ion batteries, potassium-ion batteries, aqueous zinc batteries, and supercapacitors. The review elucidates the intricate growth process of VG and underscores the paramount importance of optimizing process parameters to tailor VG for specific applications. Subsequently, the pivotal role of VG in enhancing the performance of various energy storage and conversion systems is exhaustively discussed. Moreover, it delves into structural improvement, performance tuning, and mechanism analysis of VG composite materials in diverse energy storage systems. In summary, this review provides a comprehensive look at VG synthesis, modification, and its wide range of applications in energy storage. It emphasizes the potential of VG in addressing critical challenges and advancing sustainable, high-performance energy storage devices, providing valuable guidance for the development of future technologies.
Collapse
Affiliation(s)
- Chaozhu Huang
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongbiao Mu
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Youqi Chu
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huicun Gu
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zifan Liao
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meisheng Han
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Zeng
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
del Valle MA, Gacitúa MA, Hernández F, Luengo M, Hernández LA. Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers (Basel) 2023; 15:1450. [PMID: 36987228 PMCID: PMC10054839 DOI: 10.3390/polym15061450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Due to the energy requirements for various human activities, and the need for a substantial change in the energy matrix, it is important to research and design new materials that allow the availability of appropriate technologies. In this sense, together with proposals that advocate a reduction in the conversion, storage, and feeding of clean energies, such as fuel cells and electrochemical capacitors energy consumption, there is an approach that is based on the development of better applications for and batteries. An alternative to commonly used inorganic materials is conducting polymers (CP). Strategies based on the formation of composite materials and nanostructures allow outstanding performances in electrochemical energy storage devices such as those mentioned. Particularly, the nanostructuring of CP stands out because, in the last two decades, there has been an important evolution in the design of various types of nanostructures, with a strong focus on their synergistic combination with other types of materials. This bibliographic compilation reviews state of the art in this area, with a special focus on how nanostructured CP would contribute to the search for new materials for the development of energy storage devices, based mainly on the morphology they present and on their versatility to be combined with other materials, which allows notable improvements in aspects such as reduction in ionic diffusion trajectories and electronic transport, optimization of spaces for ion penetration, a greater number of electrochemically active sites and better stability in charge/discharge cycles.
Collapse
Affiliation(s)
- M. A. del Valle
- Laboratorio de Electroquímica de Polímeros, Pontificia Universidad Católica de Chile, Av. V. Mackenna 4860, Santiago 7820436, Chile
| | - M. A. Gacitúa
- Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Ejército 441, Santiago 8370191, Chile
| | - F. Hernández
- Laboratorio de Electroquímica, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso 2340000, Chile
| | - M. Luengo
- Laboratorio de Electroquímica, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso 2340000, Chile
| | - L. A. Hernández
- Laboratorio de Electroquímica, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso 2340000, Chile
| |
Collapse
|
3
|
Surplus Charge Injection Enables High-Voltage Stable 2D Polyaniline Supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Wu X, Zhang H, He C, Wu C, Huang KJ. High-power-energy proton supercapacitor based on interface-adapted durable polyaniline and hexagonal tungsten oxide. J Colloid Interface Sci 2021; 601:727-733. [PMID: 34091319 DOI: 10.1016/j.jcis.2021.05.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/06/2023]
Abstract
Supercapacitors are high power energy storage devices, however, their application are remain limited by the low energy density. Developing high capacity electrode materials and constructing devices with high operating voltage are effective ways to solve this problem. Herein, performance of polyaniline (PANI) electrode materials is dramatically enhanced by engineering robust PANI/carbon interfaces, through assembling PANI nanorod array on rose petals derived carbon network (RPDCN). The structure of the PANI is optimized by adjusting the concentration of the aniline precursor. The unique structure enables the prepared PANI/RPDCN composite show a high capacitance of 636 F g-1 at 0.5 A g-1, based on the total weight of PANI and RPDCN substrate. The robust interface effectively prolonged the composite electrode stably cycled for over 2000 cycles at 2 A g-1 with a capacity retention of 89%. When coupled with a hexagonal tungsten oxide (h-WO3) anode, a high-power asymmetric proton supercapacitor with high energy densities (29.0 Wh kg-1/0.61 kW kg-1 and 21.4 Wh kg-1/19.51 kW kg-1) was assembled. This work provides an effective and eco-friendly route toward superior PANI electrodes and proposes a promising high-power energy storage system using proton as working ion.
Collapse
Affiliation(s)
- Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Chongqing 400715, China
| | - Huanhuan Zhang
- Collaborative Innovation Center of Henan Province for Energy-Saving Building Materials, Xinyang Normal University, Xinyang 464000, China
| | - Chuan He
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Chen Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
5
|
Zheng W, Zhao X, Fu W. Review of Vertical Graphene and its Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9561-9579. [PMID: 33616394 DOI: 10.1021/acsami.0c19188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vertical graphene (VG) is a thin-film complex material featuring hierarchical microstructures: graphene-containing carbon nanosheets growing vertically on its deposition substrate, few-layer graphene basal layers, and chemically active atomistic defect sites and edges. Thanks to the fundamental characteristics of graphene materials, e.g. excellent electrical conductivity, thermal conductivity, chemical stability, and large specific surface area, VG materials have been successfully implemented into various niche applications which are strongly associated with their unique morphology. The microstructure of VG materials can be tuned by modifying growth methods and the parameters of growth processes. Multiple growth processes have been developed to address faster, safer, and mass production methods of VG materials, as well as accommodating various applications. VG's successful applications include field emission, supercapacitors, fuel cells, batteries, gas sensors, biochemical sensors, electrochemical analysis, strain sensors, wearable electronics, photo trapping, terahertz emission, etc. Research topics on VG have been more diversified in recent years, indicating extensive attention from the research community and great commercial value. In this review article, VG's morphology is briefly reviewed, and then various growth processes are discussed from the perspective of plasma science. After that, the most recent progress in its applications and related sciences and technologies are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- William and Mary Research Institute, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - Xin Zhao
- William and Mary Research Institute, College of William and Mary, Williamsburg, Virginia 23187, United States
| | - Wenjie Fu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- William and Mary Research Institute, College of William and Mary, Williamsburg, Virginia 23187, United States
| |
Collapse
|
6
|
Quan T, Härk E, Xu Y, Ahmet I, Höhn C, Mei S, Lu Y. Unveiling the Formation of Solid Electrolyte Interphase and its Temperature Dependence in "Water-in-Salt" Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3979-3990. [PMID: 33427459 DOI: 10.1021/acsami.0c19506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
"Water-in-salt" (WIS) electrolytes have emerged as an excellent superconcentrated ionic medium for high-power energy storage systems such as supercapacitors due to their extended working potential compared to the conventional dilute aqueous electrolyte. In this work, we have investigated the performance of WIS supercapacitors using hollow carbon nanoplates as electrodes and compared it to that based on the conventional "salt-in-water" electrolytes. Moreover, the potentiostatic electrochemical impedance spectroscopy has been employed to provide an insightful look into the charge transport properties, which also, for the first time, reveals the formation of a solid-electrolyte interphase (SEI) and their temperature-dependent impedance for charge transfer and adsorption. Furthermore, the effect of temperature on the electrochemical performance of the WIS supercapacitors in the temperature range from 15 to 60 °C has been studied, which presents a gravimetric capacitance of 128 F g-1 and a volumetric capacitance of 197.12 F cm-3 at 55 °C compared to 87.5 F g-1 and 134.75 F cm-3 at 15 °C. The in-depth understanding about the formation of SEI layer and the electrochemical performance at different temperatures for WIS supercapacitors will assist the efforts toward designing better aqueous electrolytes for supercapacitors.
Collapse
Affiliation(s)
- Ting Quan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Eneli Härk
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Yaolin Xu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Ibbi Ahmet
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Christian Höhn
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute of Chemistry, Universität Potsdam, Karl-Liebknecht-Straße 25, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Fan J, Hu L, Qi Z, Wan T, Huang S, Zhang X, Han Z, Chu D. Electrodeposited cobalt sulfide on a vertical graphene nanocomposite for high-performance supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj03777c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cobalt sulfide/vertical graphene (CoS/VG) composite electrode was fabricated via a facile electrodeposition method for high-performance supercapacitor application.
Collapse
Affiliation(s)
- Jiajun Fan
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Zhenjun Qi
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Shihao Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Xiao Zhang
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW 2070, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
8
|
Electrochemical performance of Silsesquioxane-GO loaded with alkoxy substituted ammonium-based ionic liquid and POAP for supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Boosting the electrochemical properties of polyaniline by one-step co-doped electrodeposition for high performance flexible supercapacitor applications. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Zhang T, Yue H, Gao X, Yao F, Chen H, Lu X, Wang Y, Guo X. High-performance supercapacitors based on polyaniline nanowire arrays grown on three-dimensional graphene with small pore sizes. Dalton Trans 2020; 49:3304-3311. [PMID: 32101240 DOI: 10.1039/d0dt00100g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional graphene (3D GR)-based hybrids have received significant attention due to their unique structures and promising applications in supercapacitors. In this paper, 3D GR with small pore sizes has been prepared by chemical vapor deposition using commercial nickel nanowires as the template. After nitric acid treatment, the hydrophilicity of 3D GR improved. Polyaniline nanowire arrays (PANI NWAs) have been successfully grown on its surface by in situ polymerization to obtain hybrid PANI NWA/3D GR. The results show that PANI NWAs with a length of ∼300 nm vertically grow on 3D GR with a pore diameter of ∼2 μm. The small pore size of 3D GR not only improves the mechanical properties of 3D GR, but also provides numerous sites for the growth of PANI NWAs. Meanwhile, PANI NWAs provide a shorter ion diffusion path and larger contact area with the electrolyte. Due to the unique structure, the hybrid exhibits a high specific capacitance of 789.9 F g-1 at 10 mV s-1. When it is assembled into a symmetric supercapacitor, it exhibits an energy density of 32.2 W h kg-1 at a power density of 793.3 W kg-1 and maintains a good cycle stability of 90% after 5000 cycles at 1.0 A g-1.
Collapse
Affiliation(s)
- Teng Zhang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Methylene blue functionalized graphene as binder-free electrode for high-performance solid state supercapacitors. J Colloid Interface Sci 2020; 561:416-425. [DOI: 10.1016/j.jcis.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 11/19/2022]
|
12
|
Zhang T, Yue H, Gao X, Yao F, Chen H, Lu X, Wang Y, Guo X. Polyaniline nanowire arrays on three-dimensional hollow graphene balls for high-performance symmetric supercapacitor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Ma Y, Jiang W, Han J, Tong Z, Wang M, Suhr J, Chen X, Xiao L, Jia S, Chae H. Experimental Investigation on Vertically Oriented Graphene Grown in a Plasma-Enhanced Chemical Vapor Deposition Process. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10237-10243. [PMID: 30794749 DOI: 10.1021/acsami.9b00896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vertically oriented graphene (VG) with three-dimensional architecture has been proved to exhibit unique properties, and its particular morphology has been realized by researchers to be crucial for its performance in practical applications. In this study, we investigated the morphology evolution of VG films synthesized by the plasma-enhanced chemical vapor deposition process, including porous graphene film, graphene wall, and graphene forest. This study reveals that the morphology of VG is controlled by a combination of the deposition and etching effects and tailored by the growth conditions, such as plasma source power and growth time and temperature. The plasma source power relates to the number of branches of VG, and the growth temperature relates to the thickness of each VG flake, whereas the growth time determines the height of VG. Finally, the electrochemical properties of VG films along with morphology evolution are investigated by fabricating as VG-based supercapacitor electrodes.
Collapse
Affiliation(s)
- Yifei Ma
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , People's Republic of China
| | | | - Jiemin Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , People's Republic of China
| | - Zhaomin Tong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , People's Republic of China
| | - Mei Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , People's Republic of China
| | | | - Xuyuan Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , People's Republic of China
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Microsystems , University of Southeast Norway , Borre N-3184 , Norway
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , People's Republic of China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , People's Republic of China
| | | |
Collapse
|
14
|
|