1
|
Ji B, Li W, Zhang F, Geng P, Li CM. MOF-Derived Transition Metal Phosphides for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409273. [PMID: 40007089 DOI: 10.1002/smll.202409273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Indexed: 02/27/2025]
Abstract
Transition metal phosphides (TMPs) in supercapacitors (SCs) applications are increasingly attracting attention because of their exceptional electrochemical performance. MOF-derived TMPs, possess high specific surface areas, rich pore structure, and controllable chemical compositions, offering promising opportunities for supercapacitor applications. There is a wide variety of MOF-derived TMPs, and they exhibit different properties in SCs. This work mainly categorizes MOF-derived TMPs (FexP, CoxP, NixP, NixCoyP, CuxP), and then outlines the latest research advancements regarding their use as electrode materials in SCs, including the latest results of synthesis methods and structural modulation. Subsequently, the applications of MOF-derived TMPs as electrode materials in SCs are discussed. At the end, perspectives of future developments and key challenges in the applications of MOF-derived TMPs in SCs are highlighted, with the aim of providing guidance for future research.
Collapse
Affiliation(s)
- Bing Ji
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Wenxiang Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Feiqing Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Pengbiao Geng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| |
Collapse
|
2
|
Solvent-regulated synthesis and phosphating of nickel-cobalt bimetal organic framework microflowers with hierarchical structure for high-performance supercapacitors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Recent Trends in Electrochemical Catalyst Design for Hydrogen Evolution, Oxygen Evolution, and Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Ding J, Jing S, Yin C, Ban C, Wang K, Liu X, Duan Y, Zhang Y, Han G, Gan L, Rao J. A new insight into the promoting effects of transition metal phosphides in methanol electrooxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Designing nitrogen-enriched heterogeneous NiS@CoNi2S4 embedded in nitrogen-doped carbon with hierarchical 2D/3D nanocage structure for efficient alkaline hydrogen evolution and triiodide reduction. J Colloid Interface Sci 2022; 630:91-105. [DOI: 10.1016/j.jcis.2022.09.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022]
|
6
|
Zhang N, Amorim I, Liu L. Multimetallic transition metal phosphide nanostructures for supercapacitors and electrochemical water splitting. NANOTECHNOLOGY 2022; 33:432004. [PMID: 35820404 DOI: 10.1088/1361-6528/ac8060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Transition metal phosphides (TMPs) have recently emerged as an important class of functional materials and been demonstrated to be outstanding supercapacitor electrode materials and catalysts for electrochemical water splitting. While extensive investigations have been devoted to monometallic TMPs, multimetallic TMPs have lately proved to show enhanced electrochemical performance compared to their monometallic counterparts, thanks to the synergistic effect between different transition metal species. This topical review summarizes recent advance in the synthesis of new multimetallic TMP nanostructures, with particular focus on their applications in supercapacitors and electrochemical water splitting. Both experimental reports and theoretical understanding of the synergy between transition metal species are comprehensively reviewed, and perspectives of future research on TMP-based materials for these specific applications are outlined.
Collapse
Affiliation(s)
- Nan Zhang
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518100, People's Republic of China
| | - Isilda Amorim
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Centre of Chemistry, University of Minho, Gualtar Campus, Braga, 4710-057, Portugal
| | - Lifeng Liu
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
7
|
Manoj S, Sadhanala HK, Perelshtein I, Gedanken A. Rhenium Sulfide Incorporated in Molybdenum Sulfide Nanosheets for High-Performance Symmetric Supercapacitors with Enhanced Capacitance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18570-18577. [PMID: 35414171 DOI: 10.1021/acsami.2c02457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supercapacitors are considered potential energy storage devices and have drawn significant attention due to their superior intrinsic advantages. Herein, we report the synthesis of ReS2 embedded in MoS2 nanosheets (RMS-31) by a hydrothermal technique. The prepared RMS-31 electrode material demonstrated superior pseudocapacitive behavior in 1 M KOH electrolyte solution, which is confirmed by the heterostructure of RMS-31 nanosheet architectures. RMS-31 has a specific capacitance of 244 F g-1 at a current density of 1 A g-1 and a greater areal capacitance of 540 mF cm-2 at a current density of 5 mA cm-2. The symmetric supercapacitor device with the RMS-31 electrode delivers an energy density of 28 W h cm-2 with a power density of 1 W cm-2 and reveals long-term stability at a constant current density of 5 mA cm-2 for 10,000 cycles while accomplishing a retention of 66.5%. The high performance of this symmetric device is attributed to the synergistic effect of ReS2 and MoS2 and the presence of the metallic 1T-MoS2 phase in the RMS-31 electrode. To the best of our knowledge, this is the first report of increasing the interlayer spacing of 2H-MoS2 by incorporating ReS2 for symmetric supercapacitor applications.
Collapse
Affiliation(s)
- Shanmugasundaram Manoj
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan52900, Israel
- Department of Chemistry, Bar-Ilan-University, Ramat-Gan52900, Israel
| | - Hari Krishna Sadhanala
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan52900, Israel
- Department of Chemistry, Bar-Ilan-University, Ramat-Gan52900, Israel
| | - Ilana Perelshtein
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan52900, Israel
- Department of Chemistry, Bar-Ilan-University, Ramat-Gan52900, Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan52900, Israel
- Department of Chemistry, Bar-Ilan-University, Ramat-Gan52900, Israel
| |
Collapse
|
8
|
Hollow NiCoSe2/C prepared through a step-by-step derivatization method for high performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Mukherjee S, Hou S, Watzele SA, Garlyyev B, Li W, Bandarenka AS, Fischer RA. Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOF‐derived Electrocatalysts. ChemElectroChem 2021. [DOI: 10.1002/celc.202101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soumya Mukherjee
- Technical University Munich: Technische Universitat Munchen Department of Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Shujin Hou
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Sebastian A. Watzele
- Technical University Munich: Technische Universitat Munchen Physik James-Franck-Str. 1 85748 Munich GERMANY
| | - Batyr Garlyyev
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Weijin Li
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Aliaksandr S. Bandarenka
- Technical University Munich: Technische Universitat Munchen Physics Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Roland A. Fischer
- Technische Universität München Lehrst. für Anorgan. u. Metallorgan. Chemie Lichtenbergstr. 4 85748 Garching GERMANY
| |
Collapse
|
10
|
Zhang K, Xu Y, Lin Y, Xiong Y, Huang J, Wang L, Peng M, Hu T, Yuan K, Chen Y. Enriching redox active sites by interconnected nanowalls-like nickel cobalt phospho-sulfide nanosheets for high performance supercapacitors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Hollow polyhedron structure of amorphous Ni-Co-S/Co(OH)2 for high performance supercapacitors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Yang Y, Li S, Huang W, Duan S, Si P, Ci L. Rational construction of ternary ZnNiP arrayed structures derived from 2D MOFs for advanced hybrid supercapacitors and Zn batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Baasanjav E, Bandyopadhyay P, Saeed G, Lim S, Jeong SM. Dual-ligand modulation approach for improving supercapacitive performance of hierarchical zinc–nickel–iron phosphide nanosheet-based electrode. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Xu F, Xia Q, Du G, Fan Z, Chen N. Coral–like Ni2P@C derived from metal–organic frameworks with superior electrochemical performance for hybrid supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Gong J, Yang J, Wang J, Lv L, Wang W, Pu L, Zhang H, Dai Y. A dual NiCo metal-organic frameworks derived NiCo2S4 core-shell nanorod arrays as high-performance electrodes for asymmetric supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137794] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Raza N, Kumar T, Singh V, Kim KH. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213660] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Hao J, Zou X, Feng L, Li W, Xiang B, Hu Q, Liang X, Wu Q. Facile fabrication of core-shell structured Ni(OH) 2/Ni(PO 3) 2 composite via one-step electrodeposition for high performance asymmetric supercapacitor. J Colloid Interface Sci 2020; 583:243-254. [PMID: 33002696 DOI: 10.1016/j.jcis.2020.08.123] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022]
Abstract
Metal metaphosphates, particularly those with core-shell structure, have showed extraordinary potential in energy storage field due to their superior chemical and physical properties. However, the core-shell metal metaphosphates with high energy density in supercapacitor application is rarely reported. Here, the core-shell structured Ni(OH)2/Ni(PO3)2 (NNP) hybrid electrode were prepared by one-step electrodeposition, which exhibits a superior specific capacitance of 1477 F g-1 at a current density of 1 A g-1. Furthermore, an aqueous asymmetric supercapacitor (ASC) based on NNP hybrid composite as cathode and reduced graphene oxide (rGO) as anode is assembled successfully to deliver a prominent energy density of 67 Wh kg-1 at 775 W kg-1 and splendid stability with capacitance retention of 81% after 8000 cycles. The outstanding electrochemical capabilities are attributed to the porous nanoflake and hierarchical core-shell structure of NNP hybrid composite, which can accelerate ion diffusion and charge transfer in redox reaction. These results indicate that nanohybrid NNP material has promise to be an advanced energy storage material.
Collapse
Affiliation(s)
- Jiangyu Hao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xuefeng Zou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Li Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wenpo Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Bin Xiang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; National-municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing 400044, China.
| | - Qin Hu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xinyue Liang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Qibing Wu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
18
|
Gao X, Wang P, Pan Z, Claverie JP, Wang J. Recent Progress in Two-Dimensional Layered Double Hydroxides and Their Derivatives for Supercapacitors. CHEMSUSCHEM 2020; 13:1226-1254. [PMID: 31797566 DOI: 10.1002/cssc.201902753] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/28/2019] [Indexed: 06/10/2023]
Abstract
High-performance supercapacitors have attracted great attention due to their high power, fast charging/discharging, long lifetime, and high safety. However, the generally low energy density and overall device performance of supercapacitors limit their applications. In recent years, the design of rational electrode materials has proven to be an effective pathway to improve the capacitive performances of supercapacitors. Layered double hydroxides (LDHs), have shown great potential in new-generation supercapacitors, due to their unique two-dimensional layered structures with a high surface area and tunable composition of the host layers and intercalation species. Herein, recent progress in LDH-based, LDH-derived, and composite-type electrode materials targeted for applications in supercapacitors, by tuning the chemical/metal composition, growth morphology, architectures, and device integration, is reviewed. The complicated relationships between the composition, morphology, structure, and capacitive performance are presented. A brief projection is given for the challenges and perspectives of LDHs for energy research.
Collapse
Affiliation(s)
- Xiaorui Gao
- School of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, PR China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, 2500, Boulevard de l'Universite, Sherbrooke, J1K 2R1, Québec, Canada
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Jerome P Claverie
- Department of Chemistry, University of Sherbrooke, 2500, Boulevard de l'Universite, Sherbrooke, J1K 2R1, Québec, Canada
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| |
Collapse
|
19
|
Zhang X, Zhang L, Xu G, Zhao A, Zhang S, Zhao T. Template synthesis of structure-controlled 3D hollow nickel-cobalt phosphides microcubes for high-performance supercapacitors. J Colloid Interface Sci 2020; 561:23-31. [DOI: 10.1016/j.jcis.2019.11.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
|
20
|
Lei X, Ge S, Tan Y, Wang Z, Li J, Li X, Hu G, Zhu X, Huang M, Zhu Y, Xiang B. High Capacity and Energy Density of Zn-Ni-Co-P Nanowire Arrays as an Advanced Electrode for Aqueous Asymmetric Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9158-9168. [PMID: 32003555 DOI: 10.1021/acsami.9b17038] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Developing multicomponent transition-metal phosphides has become an efficient way to improve the capacitive performance of single-component transition-metal phosphides. However, reports on quaternary phosphides for supercapacitor applications are still scarce. Here, we report high capacity and energy density of Zn-Ni-Co-P quaternary phosphide nanowire arrays on nickel foam (ZNCP-NF) composed of highly conductive metal-rich phosphides as an advanced binder-free electrode in aqueous asymmetric supercapacitors. In a three-electrode system using the new electrode, a high specific capacity of 1111 C g-1 was obtained at a current density of 10 A g-1. Analysis of this aqueous asymmetric supercapacitor with ZNCP-NF as the positive electrode and commercial activated carbon as the negative electrode reveals a high energy density (37.59 Wh kg-1 at a power density of 856.52 W kg-1) and an outstanding cycling performance (capacity retention of 92.68% after 10 000 cycles at 2 A g-1). Our results open a path for a new design of advanced electrode material for supercapacitors.
Collapse
Affiliation(s)
- Xueyan Lei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , 230026 Hefei , Anhui , China
| | - Shicheng Ge
- School of Mechanical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , China
| | - Yihong Tan
- Department of Applied Chemistry , University of Science and Technology of China , 230026 Hefei , Anhui , China
| | - Zhi Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , 230026 Hefei , Anhui , China
| | - Jing Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , 230026 Hefei , Anhui , China
| | - Xuefeng Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , 230026 Hefei , Anhui , China
| | - Guojing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , 230026 Hefei , Anhui , China
| | - Xingqun Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , 230026 Hefei , Anhui , China
| | - Meng Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , 230026 Hefei , Anhui , China
| | - Yanwu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , 230026 Hefei , Anhui , China
| | - Bin Xiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , 230026 Hefei , Anhui , China
| |
Collapse
|
21
|
Chebrolu VT, Balakrishnan B, Aravindha Raja S, Cho I, Bak JS, Kim HJ. The one-step electrodeposition of nickel phosphide for enhanced supercapacitive performance using 3-mercaptopropionic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj00367k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TMPs have received considerable attention for various applications, including the water splitting reaction (hydrogen evolution reaction and oxygen evolution reaction), methanol oxidation, the oxygen reduction reaction, rechargeable batteries, and supercapacitors.
Collapse
Affiliation(s)
| | - Balamuralitharan Balakrishnan
- Department of Electronics and Communication Engineering
- Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology
- Chennai 600062
- India
| | | | - Inho Cho
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jin-Soo Bak
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hee-Je Kim
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
22
|
Liu S, Xu Y, Wang C, An Y. Metal‐Organic Framework Derived Ni
2
P/C Hollow Microspheres as Battery‐Type Electrodes for Battery‐Supercapacitor Hybrids. ChemElectroChem 2019. [DOI: 10.1002/celc.201901504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuling Liu
- Institution College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for IndustryShaanxi University of Science and Technology Xi'an 710021 P R China
| | - Yaya Xu
- Institution College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for IndustryShaanxi University of Science and Technology Xi'an 710021 P R China
| | - Chao Wang
- Institution College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for IndustryShaanxi University of Science and Technology Xi'an 710021 P R China
| | - Yiming An
- Institution College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for IndustryShaanxi University of Science and Technology Xi'an 710021 P R China
| |
Collapse
|
23
|
In-situ growth of hollow NiCo layered double hydroxide on carbon substrate for flexible supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134710] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Zhou Q, Gong Y, Tao K. Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134582] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Co(OH)2@FeCo2O4 as electrode material for high performance faradaic supercapacitor application. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Surendran S, Shanmugapriya S, Zhu P, Yan C, Vignesh RH, Lee YS, Zhang X, Selvan RK. Hydrothermally synthesised NiCoP nanostructures and electrospun N-doped carbon nanofiber as multifunctional potential electrode for hybrid water electrolyser and supercapatteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|