1
|
Liu J, Cai Y, Tian Z, Lu X, Wang Z, Lavorgna M, Xia H. Nitrogen and Sulfur Co-Doped Graphene Composite Aerogel Microspheres Supporting Pt Electrode-Catalyzed Methanol Electro-Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22687-22697. [PMID: 40194917 DOI: 10.1021/acsami.5c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Nitrogen and sulfur co-doped graphene composite aerogel microspheres containing pyrolyzed carbon (NS-GAMs@C) are prepared by pressure-spraying the graphene oxide (GO) dispersion with water-soluble phenolic resin and thiourea, followed by freeze shaping, freeze-drying, and high-temperature carbonization. The resulting NS-GAMs@C possesses interconnected porous structures with large surface areas and high doping levels of N/S elements. Furthermore, the platinum nanoparticles (Pt NPs) are grown onto the NS-GAMs@C via a solvothermal reduction reaction to obtain the Pt/NS-GAMs@C microspheres with an average particle size of ∼32.25 μm. The residual carbon species in situ formed by the high-temperature carbonization of phenolic resin can act as intercalation compounds to reduce the self-stacking of graphene sheets, which contributes to an enhanced specific surface area and doping level. The N/S co-doping in NS-GAMs@C improves the interaction between the Pt and carriers, reduces the size of Pt NPs, ensures their even distribution, and increases the proportion of highly active Pt (111) crystal planes. Consequently, the methanol oxidation activity of Pt/NS-GAMs@C is significantly improved compared to undoped materials. Specifically, the optimized Pt/NS-GAMs@C composites demonstrate a remarkable mass activity of 840.11 mA·mg-1 Pt for methanol electrooxidation, which is approximately 2.39, 3.94, 3.41, and 1.75 times higher than that of commercial Pt/C, Pt/rGO (reduced GO), Pt/GAMs without doping, and Pt/NS-GAB@C (bulk aerogel), respectively. Additionally, the Pt/NS-GAMs@C exhibits long-term electrocatalytic stability. This research provides a novel catalyst system based on aerogel microspheres for methanol electrooxidation fuel cells.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yifan Cai
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhishuai Tian
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xili Lu
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhanhua Wang
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Marino Lavorgna
- Institute of Polymers, Composites and Biomaterials, National Research Council, P. le Fermi, Portici, Naples 1-80055, Italy
| | - Hesheng Xia
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Sun B, Lv H, Xu Q, Tong P, Qiao P, Tian H, Xia H. Island-in-Sea Structured Pt 3Fe Nanoparticles-in-Fe Single Atoms Loaded in Carbon Materials as Superior Electrocatalysts toward Alkaline HER and Acidic ORR. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400240. [PMID: 38593333 DOI: 10.1002/smll.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Indexed: 04/11/2024]
Abstract
In this work, Pt3Fe nanoparticles (Pt3Fe NPs) with the ordered internal structure and Pt-rich shells surrounded by plenty of Fe single atoms (Fe SAs) as active species (Pt3Fe NP-in-Fe SA) loaded in the carbon materials are successfully fabricated, which are abbreviated as island-in-sea structured (IISS) Pt3Fe NP-in-Fe SA catalysts. Moreover, the synergistic effect of O-bridging between Pt3Fe NPs and Fe SAs, and the ordered internal structured Pt3Fe NPs with Pt-rich shells of an optimal thickness contributes to the achievement of the local acidic environments on the surfaces of Pt3Fe NPs in the alkaline hydrogen evolution reaction (HER) and the enhancement of the desorption rate of *OH intermediate in the acidic oxygen reduction reaction (ORR). In addition, the electronic interactions between Pt3Fe NPs and dispersed Fe SAs cannot only provide efficient electrons transfer, but also prevent the aggregation and dissolution of Pt3Fe NPs. Furthermore, the overpotential and the half wave potential of the as-prepared IISS Pt3Fe NP-in-Fe SA catalysts toward the alkaline HER and toward the acidic ORR are 8 mV at a current density of 10 mA cm-2 and 0.933 V, respectively, which is 29 lower and 86 mV higher than those (37 mV and 0.847 V) of commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Benteng Sun
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hang Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Qi Xu
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Peiran Tong
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - He Tian
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
3
|
Huang H, Guo X, Zhang C, Yang L, Jiang Q, He H, Amin MA, Alshahrani WA, Zhang J, Xu X, Yamauchi Y. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells. ACS NANO 2024; 18:10341-10373. [PMID: 38572836 DOI: 10.1021/acsnano.3c08486] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xiangjie Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Ali Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Vu MT, Ngan Nguyen TT, Hung TQ, Pham-Truong TN, Osial M, Decorse P, Nguyen TT, Piro B, Thu VT. Insights into Structural Behaviors of Thiolated and Aminated Reduced Graphene Oxide Supports to Understand Their Effect on MOR Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13897-13907. [PMID: 37738086 DOI: 10.1021/acs.langmuir.3c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
It is essential to develop novel catalysts with high catalytic activity, strong durability, and good stability for further application in methanol fuel cells. In this work, we present for the first time the effect of the chemical functional groups (thiol and amine) with different electron affinity in reduced graphene oxide supports on the morphology and catalytic activity of platinum nanoparticles for the methanol oxidation reaction. Hydroxyl groups on graphene oxide were initially brominated and then transformed to the desired functional groups. The good dispersion of metal nanoparticles over functionalized carbon substrates (particle size less than 5 nm) with good durability, even at a limited functionalization degree (less than 7%) has been demonstrated by morphological and structural studies. The durability of the catalysts was much improved via strong coordination between the metal and nitrogen or sulfur atoms. Impressively, the catalytic activity of platinum nanoparticles on aminated reduced graphene oxide was found to be much better than that on thiolated graphene oxide despite the weaker affinity between amine and noble metals. These findings support further developing new graphene derivatives with the desired functionalization for electronics and energy applications..
Collapse
Affiliation(s)
- Minh Thu Vu
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Thi Thanh Ngan Nguyen
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Tran Quang Hung
- Vietnam Academy of Science and Technology (VAST), Institute of Chemistry (IOC), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | | | - Magdalena Osial
- Polish Academy of Sciences, Institute of Fundamental Technological Research, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Philippe Decorse
- Université Paris Cité, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, Paris F-75013, France
| | - Thi Thom Nguyen
- Vietnam Academy of Science and Technology (VAST), Institute of Tropical Technology (ITT), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Benoit Piro
- Université Paris Cité, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, Paris F-75013, France
| | - Vu Thi Thu
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| |
Collapse
|
5
|
Denis PA. Heteroatom Codoped Graphene: The Importance of Nitrogen. ACS OMEGA 2022; 7:45935-45961. [PMID: 36570263 PMCID: PMC9773818 DOI: 10.1021/acsomega.2c06010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Although graphene has exceptional properties, they are not enough to solve the extensive list of pressing world problems. The substitutional doping of graphene using heteroatoms is one of the preferred methods to adjust the physicochemical properties of graphene. Much effort has been made to dope graphene using a single dopant. However, in recent years, substantial efforts have been made to dope graphene using two or more dopants. This review summarizes all the hard work done to synthesize, characterize, and develop new technologies using codoped, tridoped, and quaternary doped graphene. First, I discuss a simple question that has a complicated answer: When can an atom be considered a dopant? Then, I briefly discuss the single atom doped graphene as a starting point for this review's primary objective: codoped or dual-doped graphene. I extend the discussion to include tridoped and quaternary doped graphene. I review most of the systems that have been synthesized or studied theoretically and the areas in which they have been used to develop new technologies. Finally, I discuss the challenges and prospects that will shape the future of this fascinating field. It will be shown that most of the graphene systems that have been reported involve the use of nitrogen, and much effort is needed to develop codoped graphene systems that do not rely on the stabilizing effects of nitrogen. I expect that this review will contribute to introducing more researchers to this fascinating field and enlarge the list of codoped graphene systems that have been synthesized.
Collapse
|
6
|
Liang X, Dong F, Tang Z, Wang Q. Surface hydroxy functionalized Pt/g-C3N4-CNS for highly efficient methanol electrocatalytic oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Lamiri L, Tounsi A, Eddine Hamza D, Yekhlef R, ridha khelladi M, Saeed Akhtar M, Belgherbi O, Boudour S, Habelhames F, Boumaza N, maouche N, Nessark B. Ag-MnO2 Composite Materials (Ferns-like structures) for Hydrogen Peroxide Reduction in Alkaline Medium. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Pushkarev AS, Pushkareva IV, Kozlova MV, Solovyev MA, Butrim SI, Ge J, Xing W, Fateev VN. Heteroatom-Modified Carbon Materials and Their Use as Supports and Electrocatalysts in Proton Exchange Membrane Fuel Cells (A Review). RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522070114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Liu Y, Sheng Y, Yin Y, Ren J, Lin X, Zou X, Wang X, Lu X. Phosphorus-Doped Activated Coconut Shell Carbon-Anchored Highly Dispersed Pt for the Chemoselective Hydrogenation of Nitrobenzene to p-Aminophenol. ACS OMEGA 2022; 7:11217-11225. [PMID: 35415345 PMCID: PMC8992265 DOI: 10.1021/acsomega.2c00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Highly dispersed Pt nanoparticles (∼2.5 nm) on phosphorus-doped activated coconut shell carbon (Pt/P-ACC) were synthesized by a two-step impregnation route. Pt/P-ACC showed a high activity, chemoselectivity, and reusability toward the hydrogenation of nitrobenzene to p-aminophenol, with hydrogen as the reducing agent in sulfuric acid. The effects of P species on the catalyst structure, surface properties, and catalytic performance were investigated. It was found that the Pt/P-ACC catalyst had an excellent catalytic activity due to its smaller Pt nanoparticles and higher content of surface-active metal compared with Pt/ACC. Besides, the experimental results and in situ infrared studies demonstrated that the interaction effect between the Pt and P species imbued the surface of Pt with an electron-rich feature, which decreased the adsorption of electron-rich substrates (that is, phenylhydroxylamine) and prevented their full hydrogenation, leading to enhanced selectivity during the hydrogenation of nitrobenzene to p-aminophenol.
Collapse
|
10
|
Xia Y, Zhao Y, Ai F, Yi Y, Liu T, Lin H, Zhu G. N and P co-doped MXenes nanoribbons for electrodeposition-free stripping analysis of Cu(II) and Hg(II). JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127974. [PMID: 34883378 DOI: 10.1016/j.jhazmat.2021.127974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
The present electrochemical stripping analysis (ESA) for multiple heavy metal ions (HMI) generally requires an electrodeposition process at a very low potential below -1.0 V, which inevitably makes the sensing procedures more complex, inefficient and power-wasting. Meanwhile, the emerging MXenes rising-star materials have been studied in various fields recently. While there are only few reports focusing on the heteroatom doping of MXenes, especially no doping-MXenes for electroanalysis. Based on these issues, a novel multifunctional heteroatoms-doped MXenes nanomaterial, N and P co-doped Ti3C2Tx MXenes nanoribbons (N,P-Ti3C2TxR), was prepared herein for the first time, and then N,P-Ti3C2TxR was used as electrode material to propose an electrodeposition-free ESA strategy for multiple HMI (Cu2+, Hg2+). Owing to the unique spontaneous adsorption and reducing capacities of N,P-Ti3C2TxR towards Cu2+ and Hg2+ coupled with the excellent sensing performances, Cu2+ and Hg2+ can undergo self-reduction to be preconcentrated on N,P-Ti3C2TxR surface with the form of Cu0 and Hg0, thus a simple and ultrasensitive electrodeposition-free ESA platform was developed successfully for the simultaneous detection of Cu2+and Hg2+. This work opened a new pathway for the detection for multiple HMI and the preparation/application of heteroatoms doping MXenes.
Collapse
Affiliation(s)
- Yixuan Xia
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Yong Zhao
- Guangzhou Baiyun Airport Customs Comprehensive Technical Service Center, Guangzhou Baiyun Airport Customs District People's Republic of China, Guangzhou 510470, PR China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Tingting Liu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Huiyu Lin
- Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, PR China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, PR China.
| |
Collapse
|
11
|
Xue Y, Xiong J, Zhang H, He H, Huang H. Ultrafine Rh nanocrystals immobilized on 3D boron and nitrogen co-doped graphene-carbon nanotube networks: high-efficiency electrocatalysts towards methanol oxidation reaction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01234k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium (Rh)-based nanocrystals are recently recognized as promising platinum (Pt)-alternative electrocatalysts for methanol oxidation due to their unique catalytic activity as well as strong anti-poisoning capacity in the alkaline media....
Collapse
|
12
|
Wang Y, Luo W, Li H, Cheng C. Ultrafine Ru nanoclusters supported on N/S doped macroporous carbon spheres for efficient hydrogen evolution reaction. NANOSCALE ADVANCES 2021; 3:5068-5074. [PMID: 36132347 PMCID: PMC9419886 DOI: 10.1039/d1na00424g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/22/2021] [Indexed: 05/15/2023]
Abstract
The construction of highly-active and stable electrocatalysts for the hydrogen evolution reaction (HER) is significant for efficient water splitting processes. Herein, we develop an efficient HER catalyst of ultrafine Ru nanoclusters supported on a N/S doped macroporous hollow carbon sphere (Ru/H-S,N-C). The N/S co-doping strategy not only facilitates the reduction of the Ru nanocluster sizes, but also regulates the electronic structure of metallic Ru, improving the HER activity of the metallic Ru catalyst. Due to the structural advantages of N/S-doped macroporous carbon spheres that provide a fast mass transfer process and the high intrinsic activity of Ru nanoclusters, the optimized Ru/H-S,N-C catalyst exhibits excellent HER performance in alkaline medium, with a low overpotential of 32 mV to reach 10 mA cm-2, fast HER kinetics (a Tafel slope of 24 mV dec-1) and excellent durability, superior to the performances of the Ru/H-N-C sample and commercial Pt/C catalyst. Our work offers some guidance on the design of efficient Ru-based electrocatalysts.
Collapse
Affiliation(s)
- Yijie Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| | - Wenjie Luo
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| | - Haojie Li
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| | - Chuanwei Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| |
Collapse
|
13
|
Recent developments of nanocarbon based supports for PEMFCs electrocatalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63736-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Zhao G, Fang C, Hu J, Zhang D. Platinum-Based Electrocatalysts for Direct Alcohol Fuel Cells: Enhanced Performances toward Alcohol Oxidation Reactions. Chempluschem 2021; 86:574-586. [PMID: 33830678 DOI: 10.1002/cplu.202000811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/20/2021] [Indexed: 12/28/2022]
Abstract
In the past few decades, Pt-based electrocatalysts have attracted great interests due to their high catalytic performances toward the direct alcohol fuel cell (DAFC). However, the high cost, poor stability, and the scarcity of Pt have markedly hindered their large-scale utilization in commerce. Therefore, enhancing the activity and durability of Pt-based electrocatalysts, reducing the Pt amount and thus the cost of DAFC have become the keys for their practical applications. In this minireview, we summarized some basic concepts to evaluate the catalytic performances in electrocatalytic alcohol oxidation reaction (AOR) including electrochemical active surface area, activity and stability, the effective approaches for boosting the catalytic AOR performance involving size decrease, structure and morphology modulation, composition effect, catalyst supports, and assistance under other external energies. Furthermore, we also presented the remaining challenges of the Pt-based electrocatalysts to achieve the fabrication of a real DAFC.
Collapse
Affiliation(s)
- Guili Zhao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Caihong Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241000, P. R. China
| | - Jinwu Hu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Deliang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
15
|
Wu T, Gan M, Ma L, Wei S, Fu Q, Yang Y, Li T, Xie F, Zhan W, Zhong X. Pt-based nanoparticles decorated by phosphorus-doped CuWO 4 to enhance methanol oxidation activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj01134k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DMFCs are promising power storage devices, while for methanol oxidation reaction, weak catalysis and carbon monoxide poisoning greatly limit their wide commercialization, so it's greatly necessary to exploit the anode catalysts with high performance.
Collapse
Affiliation(s)
- Taichun Wu
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Mengyu Gan
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Li Ma
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Shuang Wei
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Qinglan Fu
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yanling Yang
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - TingTing Li
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Fei Xie
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Wang Zhan
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Xiujuan Zhong
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
16
|
Yuda A, Ashok A, Kumar A. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1802811] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Afdhal Yuda
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| | - Anchu Ashok
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| | - Anand Kumar
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Sun Z, Fang S, Hu YH. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chem Rev 2020; 120:10336-10453. [PMID: 32852197 DOI: 10.1021/acs.chemrev.0c00083] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon materials, with their diverse allotropes, have played significant roles in our daily life and the development of material science. Following 0D C60 and 1D carbon nanotube, 2D graphene materials, with their distinctively fascinating properties, have been receiving tremendous attention since 2004. To fulfill the efficient utilization of 2D graphene sheets in applications such as energy storage and conversion, electrochemical catalysis, and environmental remediation, 3D structures constructed by graphene sheets have been attempted over the past decade, giving birth to a new generation of graphene materials called 3D graphene materials. This review starts with the definition, classifications, brief history, and basic synthesis chemistries of 3D graphene materials. Then a critical discussion on the design considerations of 3D graphene materials for diverse applications is provided. Subsequently, after emphasizing the importance of normalized property characterization for the 3D structures, approaches for 3D graphene material synthesis from three major types of carbon sources (GO, hydrocarbons and inorganic carbon compounds) based on GO chemistry, hydrocarbon chemistry, and new alkali-metal chemistry, respectively, are comprehensively reviewed with a focus on their synthesis mechanisms, controllable aspects, and scalability. At last, current challenges and future perspectives for the development of 3D graphene materials are addressed.
Collapse
Affiliation(s)
- Zhuxing Sun
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States.,School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Zhang J, Lu S, Xiang Y, Jiang SP. Intrinsic Effect of Carbon Supports on the Activity and Stability of Precious Metal Based Catalysts for Electrocatalytic Alcohol Oxidation in Fuel Cells: A Review. CHEMSUSCHEM 2020; 13:2484-2502. [PMID: 32068972 DOI: 10.1002/cssc.202000048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Electrocatalyst supports, in particular carbonaceous materials, play critical roles in the electrocatalytic activity and stability of precious metal group (PMG)-based catalysts such as Pt, Pd, and Au for the electrochemical alcohol oxidation reaction (AOR) of fuels such as methanol and ethanol in polymer electrolyte membrane fuel cells (PEMFCs). Carbonaceous supports such as high surface area carbon provide electronic contact throughout the catalyst layer, isolate PMG nanoparticles (NPs) to maintain high electrochemical surface area, and provide hydrophobic properties to avoid flooding of the catalyst layer by liquid water produced. Compared to high surface area carbon, PMG catalysts supported on 1D and 2D carbon materials such as graphene and carbon nanotubes show enhanced activity and durability due to the intrinsic effect of the underlying carbonaceous supports on the electronic states of PMG NPs. The modification of the electronic environment, in particular the d-band centers of PMG NPs, weakens the adsorption of AOR intermediates, facilitates breaking of the C-C bonds, and thus enhances the electrocatalytic activity of PMG catalysts. The doping of heteroatoms further facilitates the electrocatalytic activity for the AOR through the structural, bifunctional, and electronic effects, in addition to the enhanced dispersion of PMG NPs in the carbon support. The prospects for the development of effective PMG-based catalysts for high-performance alcohol-fuel-based PEMFCs is discussed.
Collapse
Affiliation(s)
- Jin Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices & School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices & School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices & School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - San Ping Jiang
- Fuels and Energy Technology Institute and WA School of Mines: Minerals, Energy & Chemical Engineering, Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
19
|
Ning X, Zhou X, Luo J, Ma L, Xu X, Zhan L. Glycerol and formic acid electro-oxidation over Pt on S-doped carbon nanotubes: Effect of carbon support and synthesis method on the metal-support interaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Gao J, Du P, Zhang Q, Shen X, Chiang FK, Wen Y, Lin X, Liu X, Qiu H. Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
An M, Du C, Du L, Wang Y, Wang Y, Sun Y, Yin G, Gao Y. Enhanced Methanol Oxidation in Acid Media on Pt/S, P Co‐doped Graphene with 3D Porous Network Structure Engineering. ChemElectroChem 2019. [DOI: 10.1002/celc.201801395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Meichen An
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology No. 92, West Da-zhi street Harbin 150001 China
- College of Horticulture and Landscape ArchitectureNortheast Agricultural University Harbin 150030 China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology No. 92, West Da-zhi street Harbin 150001 China
| | - Lei Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology No. 92, West Da-zhi street Harbin 150001 China
| | - Yajing Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology No. 92, West Da-zhi street Harbin 150001 China
| | - Yang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology No. 92, West Da-zhi street Harbin 150001 China
| | - Yongrong Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology No. 92, West Da-zhi street Harbin 150001 China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology No. 92, West Da-zhi street Harbin 150001 China
| | - Yunzhi Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical EngineeringHarbin Institute of Technology No. 92, West Da-zhi street Harbin 150001 China
| |
Collapse
|