1
|
Ursem RFR, Steijlen A, Parrilla M, Bastemeijer J, Bossche A, De Wael K. Worth your sweat: wearable microfluidic flow rate sensors for meaningful sweat analytics. LAB ON A CHIP 2025; 25:1296-1315. [PMID: 39878525 PMCID: PMC11776456 DOI: 10.1039/d4lc00927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Wearable microfluidic sweat sensors could play a major role in the future of monitoring health and wellbeing. Sweat contains biomarkers to monitor health and hydration status, and it can provide information on drug intake, making it an interesting non-invasive alternative to blood. However, sweat is not created in excess, and this requires smart sweat collection strategies to handle small volumes. Microfluidic solutions are commonly employed which use capillary action or evaporation to drive flow. In current literature about sweat analytics, the emphasis lies predominantly on developing the sensors for measuring the composition of sweat. Yet, solely measuring sweat composition does not suffice, because the composition varies due to inter- and intra-individual differences in sweat rate. The measurement of sweat rate is thus crucial for enabling a reliable interpretation and standardisation of this data. Recently, more wearable sweat sensors, also integrating a means of measuring flow, have been developed. This manuscript reviews state-of-the-art sweat collection strategies and flow rate measuring techniques. Generally, flow rate measurements are performed by impedimetric or capacitive methods. However, these techniques can be impaired due to limited lifetime and signal interference from changing ionic contents in sweat. Discrete measurement techniques, such as impedance measurements of an advancing fluid front with interdigitated electrodes, calorimetric and colorimetric techniques can be very reliable, because they selectively measure flow. However, one should take the available size, intended application and compatibility with other sensors into account. Overall, accurate flow rate sensors integrated in reliable microfluidic sweat sensor platforms will enable the standardisation of sweat measurements to unlock the potential of sweat analytics in advancing physiological research, personalized diagnostics and treatment of diseases.
Collapse
Affiliation(s)
- R F R Ursem
- Electronic Instrumentation, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
| | - A Steijlen
- Electronic Instrumentation, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
- Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| | - M Parrilla
- Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| | - J Bastemeijer
- Electronic Instrumentation, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
| | - A Bossche
- Electronic Instrumentation, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
| | - K De Wael
- Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| |
Collapse
|
2
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Lanthanide (Eu 3+/Tb 3+)-Loaded γ-Cyclodextrin Nano-Aggregates for Smart Sensing of the Anticancer Drug Irinotecan. Int J Mol Sci 2022; 23:ijms23126597. [PMID: 35743042 PMCID: PMC9223530 DOI: 10.3390/ijms23126597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/11/2023] Open
Abstract
The clinical use of anticancer drugs necessitates new technologies for their safe, sensitive, and selective detection. In this article, lanthanide (Eu3+ and Tb3+)-loaded γ-cyclodextrin nano-aggregates (ECA and TCA) are reported, which sensitively detects the anticancer drug irinotecan by fluorescence intensity changes. Fluorescent lanthanide (Eu3+ and Tb3+) complexes exhibit high fluorescence intensity, narrow and distinct emission bands, long fluorescence lifetime, and insensitivity to photobleaching. However, these lanthanide (Eu3+ and Tb3+) complexes are essentially hydrophobic, toxic, and non-biocompatible. Lanthanide (Eu3+ and Tb3+) complexes were loaded into naturally hydrophilic γ-cyclodextrin to form fluorescent nano-aggregates. The biological nontoxicity and cytocompatibility of ECA and TCA fluorescent nanoparticles were demonstrated by cytotoxicity experiments. The ECA and TCA fluorescence nanosensors can detect irinotecan selectively and sensitively through the change of fluorescence intensity, with detection limits of 6.80 μM and 2.89 μM, respectively. ECA can safely detect irinotecan in the cellular environment, while TCA can detect irinotecan intracellularly and is suitable for cell labeling.
Collapse
|
4
|
Hatamluyi B, Sadeghian R, Sany SBT, Alipourfard I, Rezayi M. Dual-signaling electrochemical ratiometric strategy for simultaneous quantification of anticancer drugs. Talanta 2021; 234:122662. [PMID: 34364470 DOI: 10.1016/j.talanta.2021.122662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
A novel and unique ratiometric electrochemical sensing strategy for highly reliable and selective simultaneous quantification of Irinotecan (IRI) and 5-Fluorouracil (5-FU) has been developed based on Pd-Au/MWCNT-rGO nanocomposite. Introduction of Pd-Au/MWCNT-rGO significantly improved the speed of electron transport, specific surface area, and electrical catalytic ability of sensing system due to synergistic effect of Pd-Au bimetallic nanoparticles and MWCNT-rGO hybrid structure. The assay strategy was based on the use of ferrocene (Fc) as reference electroactive substance and IRI and 5-FU as analytes with three oxidation peaks at different potentials (Fc at +0.20 V, IRI at +0.58 V, and 5-FU at +1.17 V). The oxidation peak currents of the IRI and 5-FU were gradually enhanced while that of Fc remained almost constant with continuous adding of IRI and 5-FU. By using IIRI/IFc and I5-FU/IFc signals as output, the designed ratiometric system showed good performance with a wide linear range of 0.05-40 μM for IRI and 0.05-75 μM for 5-FU and low detection limit of 0.0061 μM and 0.0094 μM for IRI and 5-FU, respectively. This study proved that ratiometric strategy is able to eliminate disturbance caused by the sensing environment and possess high sensitivity, reproducibility, stability, and selectivity toward anticancer drugs detection, over potential interferents as well as opens a new procedure for reliable and selective simultaneous analysis of other analytes.
Collapse
Affiliation(s)
- Behnaz Hatamluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health Education and Health Promotion, Social Determinants of Health Research Center, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Gold nanoparticles anchored graphitized carbon nanofibers ionic liquid electrode for ultrasensitive and selective electrochemical sensing of anticancer drug irinotecan. Mikrochim Acta 2020; 187:579. [DOI: 10.1007/s00604-020-04560-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023]
|
6
|
Moro G, Barich H, Driesen K, Felipe Montiel N, Neven L, Domingues Mendonça C, Thiruvottriyur Shanmugam S, Daems E, De Wael K. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications. Anal Bioanal Chem 2020; 412:5955-5968. [DOI: 10.1007/s00216-020-02584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
|
7
|
A fast method for the detection of irinotecan in plasma samples by combining solid phase extraction and differential pulse voltammetry. Anal Bioanal Chem 2020; 412:1585-1595. [DOI: 10.1007/s00216-020-02386-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
|
8
|
Garzón V, Pinacho DG, Bustos RH, Garzón G, Bustamante S. Optical Biosensors for Therapeutic Drug Monitoring. BIOSENSORS 2019; 9:E132. [PMID: 31718050 PMCID: PMC6955905 DOI: 10.3390/bios9040132] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.
Collapse
Affiliation(s)
- Vivian Garzón
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Daniel G. Pinacho
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Rosa-Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Gustavo Garzón
- Faculty of Medicine, Universidad de La Sabana, Chía 140013, Colombia
| | - Sandra Bustamante
- Physics Department, the Centre for NanoHealth, Swansea University, Swansea SA2 8PP, UK
- Vedas, Corporación de Investigación e Innovación, Medellín 050001, Colombia
| |
Collapse
|
9
|
Scattolin T, Moro G, Rizzolio F, Santo C, Moretto LM, Visentin. F. Improved Synthesis, Anticancer Activity and Electrochemical Characterization of Unusual Zwitterionic Palladium Compounds with a Ten‐Term Coordinative Ring. ChemistrySelect 2019. [DOI: 10.1002/slct.201902316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Giulia Moro
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
- Pathology UnitIRCCS CRO Aviano-National Cancer Institute 33081 Aviano Italy
| | - Claudio Santo
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Ligia Maria Moretto
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Fabiano Visentin.
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| |
Collapse
|